Encuentra la suma vertical máxima en el árbol binario

Dado un árbol binario, encuentre la suma máxima del nivel vertical en el árbol binario.

Ejemplos: 

Input : 
                3
              /  \
             4    6
           /  \  /  \
         -1   -2 5   10
                  \
                   8  

Output : 14
Vertical level having nodes 6 and 8 has maximum
vertical sum 14. 

Input :
                1
              /  \
             5    8
           /  \    \
          2   -6    3
           \       /
           -1     -4
             \
              9

Output : 4 

Una solución simple es encontrar primero la suma del nivel vertical de cada nivel, comenzando desde el nivel vertical mínimo hasta el nivel vertical máximo. Encontrar la suma de un nivel vertical toma O(n) tiempo. En el peor de los casos, la complejidad temporal de esta solución es O(n^2).

Una solución eficiente es hacer un recorrido de orden de nivel de un árbol binario dado y actualizar la suma de nivel vertical de cada nivel mientras se realiza el recorrido. Después de encontrar la suma vertical de cada nivel, encuentre la suma vertical máxima de estos valores.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program to find maximum vertical
// sum in binary tree.
#include <bits/stdc++.h>
using namespace std;
 
// A Binary Tree Node
struct Node {
    int data;
    struct Node *left, *right;
};
 
// A utility function to create a new
// Binary Tree Node
struct Node* newNode(int item)
{
    struct Node* temp = (struct Node*)malloc(sizeof(struct Node));
    temp->data = item;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Function to find maximum vertical sum
// in binary tree.
int maxVerticalSum(Node* root)
{
    if (root == NULL) {
        return 0;
    }
 
    // To store sum of each vertical level.
    unordered_map<int, int> verSum;
 
    // To store maximum vertical level sum.
    int maxSum = INT_MIN;
 
    // To store vertical level of current node.
    int currLev;
 
    // Queue to perform level order traversal.
    // Each element of queue is a pair of node
    // and its vertical level.
    queue<pair<Node*, int> > q;
    q.push({ root, 0 });
 
    while (!q.empty()) {
 
        // Extract node at front of queue
        // and its vertical level.
        root = q.front().first;
        currLev = q.front().second;
        q.pop();
 
        // Update vertical level sum of
        // vertical level to which
        // current node belongs to.
        verSum[currLev] += root->data;
 
        if (root->left)
            q.push({ root->left, currLev - 1 });
 
        if (root->right)
            q.push({ root->right, currLev + 1 });
    }
 
    // Find maximum vertical level sum.
    for (auto it : verSum)
        maxSum = max(maxSum, it.second);
    
    return maxSum;
}
 
// Driver Program to test above functions
int main()
{
    /*
                3
              /  \
             4    6
           /  \  /  \
         -1   -2 5   10
                  \
                   8 
    */
 
    struct Node* root = newNode(3);
    root->left = newNode(4);
    root->right = newNode(6);
    root->left->left = newNode(-1);
    root->left->right = newNode(-2);
    root->right->left = newNode(5);
    root->right->right = newNode(10);
    root->right->left->right = newNode(8);
 
    cout << maxVerticalSum(root);
    return 0;
}

Python3

# Python3 program to find maximum
# vertical sum in binary tree.
from sys import maxsize
from collections import deque
 
INT_MIN = -maxsize
 
class Node:
     
    def __init__(self, data):
         
        self.data = data
        self.left = None
        self.right = None
 
# Function to find maximum vertical sum
# in binary tree.
def maxVerticalSum(root: Node) -> int:
     
    if (root is None):
        return 0
 
    # To store sum of each vertical level.
    verSum = dict()
 
    # To store maximum vertical level sum.
    maxSum = INT_MIN
 
    # To store vertical level of current node.
    currLev = 0
 
    # Queue to perform level order traversal.
    # Each element of queue is a pair of node
    # and its vertical level.
    q = deque()
    q.append([root, 0])
 
    while (q):
 
        # Extract node at front of queue
        # and its vertical level.
        root = q[0][0]
        currLev = q[0][1]
        q.popleft()
 
        # Update vertical level sum of
        # vertical level to which
        # current node belongs to.
        if currLev not in verSum:
            verSum[currLev] = 0
             
        verSum[currLev] += root.data
 
        if (root.left):
            q.append([root.left, currLev - 1])
 
        if (root.right):
            q.append([root.right, currLev + 1])
 
    # Find maximum vertical level sum.
    for it in verSum:
        maxSum = max([maxSum, verSum[it]])
 
    return maxSum
 
# Driver code
if __name__ == "__main__":
     
    '''
                3
              /  \
             4    6
           /  \  /  \
         -1   -2 5   10
                  \
                   8 
    '''
 
    root = Node(3)
    root.left = Node(4)
    root.right = Node(6)
    root.left.left = Node(-1)
    root.left.right = Node(-2)
    root.right.left = Node(5)
    root.right.right = Node(10)
    root.right.left.right = Node(8)
 
    print(maxVerticalSum(root))
 
# This code is contributed by sanjeev2552

Javascript

<script>
 
// Javascript program to find maximum
// vertical sum in binary tree.
 
// A Binary Tree Node
class Node
{
    constructor(item)
    {
        this.left = null;
        this.right = null;
        this.data = item;
    }
}
 
// A utility function to create a new
// Binary Tree Node
function newNode(item)
{
    let temp = new Node(item);
    return temp;
}
 
// Function to find maximum vertical sum
// in binary tree.
function maxVerticalSum(root)
{
    if (root == null)
    {
        return 0;
    }
 
    // To store sum of each vertical level.
    let verSum = new Map();
 
    // To store maximum vertical level sum.
    let maxSum = Number.MIN_VALUE;
 
    // To store vertical level of current node.
    let currLev;
 
    // Queue to perform level order traversal.
    // Each element of queue is a pair of node
    // and its vertical level.
    let q = [];
    q.push([ root, 0 ]);
 
    while (q.length > 0)
    {
         
        // Extract node at front of queue
        // and its vertical level.
        root = q[0][0];
        currLev = q[0][1];
        q.shift();
 
        // Update vertical level sum of
        // vertical level to which
        // current node belongs to.
        if (verSum.has(currLev))
        {
            verSum.set(currLev, verSum.get(currLev) +
                                root.data);
        }
        else
        {
            verSum.set(currLev, root.data);
        }
 
        if (root.left)
            q.push([root.left, currLev - 1]);
 
        if (root.right)
            q.push([root.right, currLev + 1]);
    }
 
    // Find maximum vertical level sum.
      verSum.forEach((values, keys)=>{
          maxSum = Math.max(maxSum, values);
    })
    return maxSum;
}
 
// Driver code
/*
            3
          /  \
         4    6
       /  \  /  \
     -1   -2 5   10
              \
               8
*/
let root = newNode(3);
root.left = newNode(4);
root.right = newNode(6);
root.left.left = newNode(-1);
root.left.right = newNode(-2);
root.right.left = newNode(5);
root.right.right = newNode(10);
root.right.left.right = newNode(8);
 
document.write(maxVerticalSum(root));
 
// This code is contributed by divyesh072019
 
</script>
Producción: 

14

 

Complejidad temporal: O(n) 
Espacio auxiliar: O(n)
 

Publicación traducida automáticamente

Artículo escrito por nik1996 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *