Dada una array arr[] que contiene GCD de cada posible par de elementos de otra array. La tarea es encontrar los números originales que se utilizan para calcular la array GCD. Por ejemplo, si los números originales son {4, 6, 8} , la array dada será {4, 2, 4, 2, 6, 2, 4, 2, 8}.
Ejemplos:
Entrada: arr[] = {5, 1, 1, 12}
Salida: 12 5
mcd(12, 12) = 12
mcd(12, 5) = 1
mcd(5, 12) = 1
mcd(5, 5) = 5Entrada: arr[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 7, 10 , 12, 2, 2}
Salida: 12 10 7 5 1
Acercarse:
- Ordena la array en orden decreciente.
- El elemento más alto siempre será uno de los números originales. Mantenga ese número y elimínelo de la array.
- Calcule el GCD del elemento tomado en el paso anterior con el elemento actual comenzando desde el mayor y descarte el valor de GCD de la array dada.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Utility function to print // the contents of an array void printArr(int arr[], int n) { for (int i = 0; i < n; i++) cout << arr[i] << " "; } // Function to find the required numbers void findNumbers(int arr[], int n) { // Sort array in decreasing order sort(arr, arr + n, greater<int>()); int freq[arr[0] + 1] = { 0 }; // Count frequency of each element for (int i = 0; i < n; i++) freq[arr[i]]++; // Size of the resultant array int size = sqrt(n); int brr[size] = { 0 }, x, l = 0; for (int i = 0; i < n; i++) { if (freq[arr[i]] > 0) { // Store the highest element in // the resultant array brr[l] = arr[i]; // Decrement the frequency of that element freq[brr[l]]--; l++; for (int j = 0; j < l; j++) { if (i != j) { // Compute GCD x = __gcd(arr[i], brr[j]); // Decrement GCD value by 2 freq[x] -= 2; } } } } printArr(brr, size); } // Driver code int main() { int arr[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 7, 10, 12, 2, 2 }; int n = sizeof(arr) / sizeof(arr[0]); findNumbers(arr, n); return 0; }
Java
// Java implementation of the approach import java.util.Arrays; class GFG { // Utility function to print // the contents of an array static void printArr(int arr[], int n) { for (int i = 0; i < n; i++) { System.out.print(arr[i] + " "); } } // Function to find the required numbers static void findNumbers(int arr[], int n) { // Sort array in decreasing order Arrays.sort(arr); reverse(arr); int freq[] = new int[arr[0] + 1]; // Count frequency of each element for (int i = 0; i < n; i++) { freq[arr[i]]++; } // Size of the resultant array int size = (int) Math.sqrt(n); int brr[] = new int[size], x, l = 0; for (int i = 0; i < n; i++) { if (freq[arr[i]] > 0 && l < size) { // Store the highest element in // the resultant array brr[l] = arr[i]; // Decrement the frequency of that element freq[brr[l]]--; l++; for (int j = 0; j < l; j++) { if (i != j) { // Compute GCD x = __gcd(arr[i], brr[j]); // Decrement GCD value by 2 freq[x] -= 2; } } } } printArr(brr, size); } // reverse array public static void reverse(int[] input) { int last = input.length - 1; int middle = input.length / 2; for (int i = 0; i <= middle; i++) { int temp = input[i]; input[i] = input[last - i]; input[last - i] = temp; } } static int __gcd(int a, int b) { if (b == 0) { return a; } return __gcd(b, a % b); } // Driver code public static void main(String[] args) { int arr[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 7, 10, 12, 2, 2}; int n = arr.length; findNumbers(arr, n); } } // This code has been contributed by 29AjayKumar
Python3
# Python 3 implementation of the approach from math import sqrt, gcd # Utility function to print # the contents of an array def printArr(arr, n): for i in range(n): print(arr[i], end = " ") # Function to find the required numbers def findNumbers(arr, n): # Sort array in decreasing order arr.sort(reverse = True) freq = [0 for i in range(arr[0] + 1)] # Count frequency of each element for i in range(n): freq[arr[i]] += 1 # Size of the resultant array size = int(sqrt(n)) brr = [0 for i in range(len(arr))] l = 0 for i in range(n): if (freq[arr[i]] > 0): # Store the highest element in # the resultant array brr[l] = arr[i] # Decrement the frequency of that element freq[brr[l]] -= 1 l += 1 for j in range(l): if (i != j): # Compute GCD x = gcd(arr[i], brr[j]) # Decrement GCD value by 2 freq[x] -= 2 printArr(brr, size) # Driver code if __name__ == '__main__': arr = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 7, 10, 12, 2, 2] n = len(arr) findNumbers(arr, n) # This code is contributed by # Surendra_Gangwar
C#
// C# implementation for above approach using System; class GFG { // Utility function to print // the contents of an array static void printArr(int []arr, int n) { for (int i = 0; i < n; i++) { Console.Write(arr[i] + " "); } } // Function to find the required numbers static void findNumbers(int []arr, int n) { // Sort array in decreasing order Array.Sort(arr); reverse(arr); int []freq = new int[arr[0] + 1]; // Count frequency of each element for (int i = 0; i < n; i++) { freq[arr[i]]++; } // Size of the resultant array int size = (int) Math.Sqrt(n); int []brr = new int[size];int x, l = 0; for (int i = 0; i < n; i++) { if (freq[arr[i]] > 0 && l < size) { // Store the highest element in // the resultant array brr[l] = arr[i]; // Decrement the frequency of that element freq[brr[l]]--; l++; for (int j = 0; j < l; j++) { if (i != j) { // Compute GCD x = __gcd(arr[i], brr[j]); // Decrement GCD value by 2 freq[x] -= 2; } } } } printArr(brr, size); } // reverse array public static void reverse(int []input) { int last = input.Length - 1; int middle = input.Length / 2; for (int i = 0; i <= middle; i++) { int temp = input[i]; input[i] = input[last - i]; input[last - i] = temp; } } static int __gcd(int a, int b) { if (b == 0) { return a; } return __gcd(b, a % b); } // Driver code public static void Main(String[] args) { int []arr = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 7, 10, 12, 2, 2}; int n = arr.Length; findNumbers(arr, n); } } /* This code contributed by PrinciRaj1992 */
PHP
<?php // PHP implementation of the approach function gcd($a, $b) { return ($a % $b) ? gcd($b, $a % $b) : $b; } // Utility function to print // the contents of an array function printArr($arr, $n) { for ($i = 0; $i < $n; $i++) echo $arr[$i], " "; } // Function to find the required numbers function findNumbers($arr, $n) { // Sort array in decreasing order rsort($arr); $freq = array_fill(0, $arr[0] + 1, 0); // Count frequency of each element for ($i = 0; $i < $n; $i++) $freq[$arr[$i]]++; // Size of the resultant array $size = floor(sqrt($n)); $brr = array_fill(0, $size, 0); $l = 0; for ($i = 0; $i < $n; $i++) { if ($freq[$arr[$i]] > 0) { // Store the highest element in // the resultant array $brr[$l] = $arr[$i]; // Decrement the frequency of that element $freq[$brr[$l]]--; $l++; for ($j = 0; $j < $l; $j++) { if ($i != $j) { // Compute GCD $x = gcd($arr[$i], $brr[$j]); // Decrement GCD value by 2 $freq[$x] -= 2; } } } } printArr($brr, $size); } // Driver code $arr = array(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 7, 10, 12, 2, 2 ); $n = count($arr) ; findNumbers($arr, $n); // This code is contributed by Ryuga ?>
Javascript
<script> // Javascript implementation for above approach // Utility function to print // the contents of an array function printArr(arr, n) { for(let i = 0; i < n; i++) { document.write(arr[i] + " "); } } // Function to find the required numbers function findNumbers(arr, n) { // Sort array in decreasing order arr.sort(function(a, b){return a - b}); reverse(arr); let freq = new Array(arr[0] + 1); freq.fill(0); // Count frequency of each element for(let i = 0; i < n; i++) { freq[arr[i]]++; } // Size of the resultant array let size = parseInt(Math.sqrt(n), 10); let brr = new Array(size); brr.fill(0); let x, l = 0; for(let i = 0; i < n; i++) { if (freq[arr[i]] > 0 && l < size) { // Store the highest element in // the resultant array brr[l] = arr[i]; // Decrement the frequency of that element freq[brr[l]]--; l++; for(let j = 0; j < l; j++) { if (i != j) { // Compute GCD x = __gcd(arr[i], brr[j]); // Decrement GCD value by 2 freq[x] -= 2; } } } } printArr(brr, size); } // Reverse array function reverse(input) { let last = input.length - 1; let middle = parseInt(input.length / 2, 10); for(let i = 0; i <= middle; i++) { let temp = input[i]; input[i] = input[last - i]; input[last - i] = temp; } } function __gcd(a, b) { if (b == 0) { return a; } return __gcd(b, a % b); } // Driver code let arr = [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 7, 10, 12, 2, 2]; let n = arr.length; findNumbers(arr, n); // This code is contributed by divyeshrabadiya07 </script>
12 10 7 5 1
Complejidad de tiempo : O(n 2 )
Espacio auxiliar : O(√n+k) donde n es el tamaño de la array y k es el elemento máximo de la array.
Publicación traducida automáticamente
Artículo escrito por Avik_Dutta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA