Dada una array de N enteros positivos, escriba una función eficiente para encontrar la suma de todos esos enteros que se pueden expresar como la suma de al menos un subconjunto de la array dada, es decir, calcule la suma total de cada subconjunto cuya suma es distinta usando solo O( suma) espacio adicional.
Ejemplos:
Entrada: arr[] = {1, 2, 3}
Salida: 0 1 2 3 4 5 6
Los distintos subconjuntos del conjunto dado son {}, {1}, {2}, {3}, {1, 2}, { 2, 3}, {1, 3} y {1, 2, 3}. Las sumas de estos subconjuntos son 0, 1, 2, 3, 3, 5, 4, 6. Después de eliminar los duplicados, obtenemos 0, 1, 2, 3, 4, 5, 6Entrada: arr[] = {2, 3, 4, 5, 6}
Salida: 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20Entrada: arr[] = {20, 30, 50}
Salida: 0 20 30 50 70 80 100
En esta publicación se ha discutido una publicación que usa el espacio O(N*sum) y O(N*sum) .
En esta publicación, se ha discutido un enfoque que usa el espacio O (suma). Cree una sola array dp de espacio O (suma) y marque dp [a [0]] como verdadero y el resto como falso. Iterar para todos los elementos de la array en la array y luego iterar desde 1 hasta sumar para cada elemento de la array y marcar todos los dp[j] con verdadero que satisfagan la condición (arr[i] == j || dp[j] || dp[(j – arr[i])]). Al final, imprima todos los índices que están marcados como verdaderos. Dado que arr[i]==j denota el subconjunto con un solo elemento y dp[(j – arr[i])] denota el subconjunto con el elemento j-arr[i] .
A continuación se muestra la implementación del enfoque anterior.
C++
// C++ program to find total sum of // all distinct subset sums in O(sum) space. #include <bits/stdc++.h> using namespace std; // Function to print all th distinct sum void subsetSum(int arr[], int n, int maxSum) { // Declare a boolean array of size // equal to total sum of the array bool dp[maxSum + 1]; memset(dp, false, sizeof dp); // Fill the first row beforehand dp[arr[0]] = true; // dp[j] will be true only if sum j // can be formed by any possible // addition of numbers in given array // upto index i, otherwise false for (int i = 1; i < n; i++) { // Iterate from maxSum to 1 // and avoid lookup on any other row for (int j = maxSum + 1; j >= 1; j--) { // Do not change the dp array // for j less than arr[i] if (arr[i] <= j) { if (arr[i] == j || dp[j] || dp[(j - arr[i])]) dp[j] = true; else dp[j] = false; } } } // If dp [j] is true then print cout << 0 << " "; for (int j = 0; j <= maxSum + 1; j++) { if (dp[j] == true) cout << j << " "; } } // Function to find the total sum // and print the distinct sum void printDistinct(int a[], int n) { int maxSum = 0; // find the sum of array elements for (int i = 0; i < n; i++) { maxSum += a[i]; } // Function to print all the distinct sum subsetSum(a, n, maxSum); } // Driver Code int main() { int arr[] = { 2, 3, 4, 5, 6 }; int n = sizeof(arr) / sizeof(arr[0]); printDistinct(arr, n); return 0; }
Java
// Java program to find total sum of // all distinct subset sums in O(sum) space. import java.util.*; class Main { // Function to print all th distinct sum public static void subsetSum(int arr[], int n, int maxSum) { // Declare a boolean array of size // equal to total sum of the array boolean dp[] = new boolean[maxSum + 1]; Arrays.fill(dp, false); // Fill the first row beforehand dp[arr[0]] = true; // dp[j] will be true only if sum j // can be formed by any possible // addition of numbers in given array // upto index i, otherwise false for (int i = 1; i < n; i++) { // Iterate from maxSum to 1 // and avoid lookup on any other row for (int j = maxSum; j >= 1; j--) { // Do not change the dp array // for j less than arr[i] if (arr[i] <= j) { if (arr[i] == j || dp[j] || dp[(j - arr[i])]) dp[j] = true; else dp[j] = false; } } } // If dp [j] is true then print System.out.print(0 + " "); for (int j = 0; j <= maxSum; j++) { if (dp[j] == true) System.out.print(j + " "); } System.out.print("21"); } // Function to find the total sum // and print the distinct sum public static void printDistinct(int a[], int n) { int maxSum = 0; // find the sum of array elements for (int i = 0; i < n; i++) { maxSum += a[i]; } // Function to print all the distinct sum subsetSum(a, n, maxSum); } public static void main(String[] args) { int arr[] = { 2, 3, 4, 5, 6 }; int n = arr.length; printDistinct(arr, n); } } // This code is contributed by divyeshrabadiya07
Python3
# Python 3 program to find total sum of # all distinct subset sums in O(sum) space. # Function to print all th distinct sum def subsetSum(arr, n, maxSum): # Declare a boolean array of size # equal to total sum of the array dp = [False for i in range(maxSum + 1)] # Fill the first row beforehand dp[arr[0]] = True # dp[j] will be true only if sum j # can be formed by any possible # addition of numbers in given array # upto index i, otherwise false for i in range(1, n, 1): # Iterate from maxSum to 1 # and avoid lookup on any other row j = maxSum while(j >= 1): # Do not change the dp array # for j less than arr[i] if (arr[i] <= j): if (arr[i] == j or dp[j] or dp[(j - arr[i])]): dp[j] = True else: dp[j] = False j -= 1 # If dp [j] is true then print print(0, end = " ") for j in range(maxSum + 1): if (dp[j] == True): print(j, end = " ") print("21") # Function to find the total sum # and print the distinct sum def printDistinct(a, n): maxSum = 0 # find the sum of array elements for i in range(n): maxSum += a[i] # Function to print all the distinct sum subsetSum(a, n, maxSum) # Driver Code if __name__ == '__main__': arr = [2, 3, 4, 5, 6] n = len(arr) printDistinct(arr, n) # This code is contributed by # Surendra_Gangwar
C#
// C# program to find total sum of // all distinct subset sums in O(sum) space. using System; class GFG { // Function to print all th distinct sum static void subsetSum(int[] arr, int n, int maxSum) { // Declare a boolean array of size // equal to total sum of the array bool[] dp = new bool[maxSum + 1]; Array.Fill(dp, false); // Fill the first row beforehand dp[arr[0]] = true; // dp[j] will be true only if sum j // can be formed by any possible // addition of numbers in given array // upto index i, otherwise false for (int i = 1; i < n; i++) { // Iterate from maxSum to 1 // and avoid lookup on any other row for (int j = maxSum; j >= 1; j--) { // Do not change the dp array // for j less than arr[i] if (arr[i] <= j) { if (arr[i] == j || dp[j] || dp[(j - arr[i])]) dp[j] = true; else dp[j] = false; } } } // If dp [j] is true then print Console.Write(0 + " "); for (int j = 0; j < maxSum + 1; j++) { if (dp[j] == true) Console.Write(j + " "); } Console.Write("21"); } // Function to find the total sum // and print the distinct sum static void printDistinct(int[] a, int n) { int maxSum = 0; // find the sum of array elements for (int i = 0; i < n; i++) { maxSum += a[i]; } // Function to print all the distinct sum subsetSum(a, n, maxSum); } static void Main() { int[] arr = { 2, 3, 4, 5, 6 }; int n = arr.Length; printDistinct(arr, n); } } // This code is contributed by divyesh072019
Javascript
<script> // Javascript program to find total sum of // all distinct subset sums in O(sum) space. // Function to print all th distinct sum function subsetSum(arr, n, maxSum) { // Declare a boolean array of size // equal to total sum of the array var dp = Array(maxSum + 1).fill(false) // Fill the first row beforehand dp[arr[0]] = true; // dp[j] will be true only if sum j // can be formed by any possible // addition of numbers in given array // upto index i, otherwise false for(var i = 1; i < n; i++) { // Iterate from maxSum to 1 // and avoid lookup on any other row for(var j = maxSum; j >= 1; j--) { // Do not change the dp array // for j less than arr[i] if (arr[i] <= j) { if (arr[i] == j || dp[j] || dp[(j - arr[i])]) dp[j] = true; else dp[j] = false; } } } // If dp [j] is true then print document.write( 0 + " "); for(var j = 0; j < maxSum + 1; j++) { if (dp[j] == true) document.write(j + " "); } document.write("21"); } // Function to find the total sum // and print the distinct sum function printDistinct(a, n) { var maxSum = 0; // Find the sum of array elements for(var i = 0; i < n; i++) { maxSum += a[i]; } // Function to print all the distinct sum subsetSum(a, n, maxSum); } // Driver Code var arr = [ 2, 3, 4, 5, 6 ]; var n = arr.length; printDistinct(arr, n); // This code is contributed by importantly </script>
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21
Complejidad temporal O(suma*n)
Espacio auxiliar: O(suma)
Publicación traducida automáticamente
Artículo escrito por Vishwanath Sharma y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA