Dado un gráfico no dirigido de ponderación positiva, encuentre el ciclo de peso mínimo en él.
Ejemplos:
Minimum weighted cycle is :
Minimum weighed cycle : 7 + 1 + 6 = 14 or 2 + 6 + 2 + 4 = 14
La idea es utilizar el algoritmo de ruta más corta . Eliminamos uno por uno todos los bordes del gráfico, luego encontramos el camino más corto entre los dos vértices de las esquinas. Agregamos un borde antes de procesar el siguiente borde.
1). create an empty vector 'edge' of size 'E' ( E total number of edge). Every element of this vector is used to store information of all the edge in graph info 2) Traverse every edge edge[i] one - by - one a). First remove 'edge[i]' from graph 'G' b). get current edge vertices which we just removed from graph c). Find the shortest path between them "Using Dijkstra’s shortest path algorithm " d). To make a cycle we add the weight of the removed edge to the shortest path. e). update min_weight_cycle if needed 3). return minimum weighted cycle
A continuación se muestra la implementación de la idea anterior.
C++
// c++ program to find shortest weighted // cycle in undirected graph #include<bits/stdc++.h> using namespace std; # define INF 0x3f3f3f3f struct Edge { int u; int v; int weight; }; // weighted undirected Graph class Graph { int V ; list < pair <int, int > >*adj; // used to store all edge information vector < Edge > edge; public : Graph( int V ) { this->V = V ; adj = new list < pair <int, int > >[V]; } void addEdge ( int u, int v, int w ); void removeEdge( int u, int v, int w ); int ShortestPath (int u, int v ); void RemoveEdge( int u, int v ); int FindMinimumCycle (); }; //function add edge to graph void Graph :: addEdge ( int u, int v, int w ) { adj[u].push_back( make_pair( v, w )); adj[v].push_back( make_pair( u, w )); // add Edge to edge list Edge e { u, v, w }; edge.push_back ( e ); } // function remove edge from undirected graph void Graph :: removeEdge ( int u, int v, int w ) { adj[u].remove(make_pair( v, w )); adj[v].remove(make_pair(u, w )); } // find the shortest path from source to sink using // Dijkstra’s shortest path algorithm [ Time complexity // O(E logV )] int Graph :: ShortestPath ( int u, int v ) { // Create a set to store vertices that are being // preprocessed set< pair<int, int> > setds; // Create a vector for distances and initialize all // distances as infinite (INF) vector<int> dist(V, INF); // Insert source itself in Set and initialize its // distance as 0. setds.insert(make_pair(0, u)); dist[u] = 0; /* Looping till all shortest distance are finalized then setds will become empty */ while (!setds.empty()) { // The first vertex in Set is the minimum distance // vertex, extract it from set. pair<int, int> tmp = *(setds.begin()); setds.erase(setds.begin()); // vertex label is stored in second of pair (it // has to be done this way to keep the vertices // sorted distance (distance must be first item // in pair) int u = tmp.second; // 'i' is used to get all adjacent vertices of // a vertex list< pair<int, int> >::iterator i; for (i = adj[u].begin(); i != adj[u].end(); ++i) { // Get vertex label and weight of current adjacent // of u. int v = (*i).first; int weight = (*i).second; // If there is shorter path to v through u. if (dist[v] > dist[u] + weight) { /* If the distance of v is not INF then it must be in our set, so removing it and inserting again with updated less distance. Note : We extract only those vertices from Set for which distance is finalized. So for them, we would never reach here. */ if (dist[v] != INF) setds.erase(setds.find(make_pair(dist[v], v))); // Updating distance of v dist[v] = dist[u] + weight; setds.insert(make_pair(dist[v], v)); } } } // return shortest path from current source to sink return dist[v] ; } // function return minimum weighted cycle int Graph :: FindMinimumCycle ( ) { int min_cycle = INT_MAX; int E = edge.size(); for ( int i = 0 ; i < E ; i++ ) { // current Edge information Edge e = edge[i]; // get current edge vertices which we currently // remove from graph and then find shortest path // between these two vertex using Dijkstra’s // shortest path algorithm . removeEdge( e.u, e.v, e.weight ) ; // minimum distance between these two vertices int distance = ShortestPath( e.u, e.v ); // to make a cycle we have to add weight of // currently removed edge if this is the shortest // cycle then update min_cycle min_cycle = min( min_cycle, distance + e.weight ); // add current edge back to the graph addEdge( e.u, e.v, e.weight ); } // return shortest cycle return min_cycle ; } // driver program to test above function int main() { int V = 9; Graph g(V); // making above shown graph g.addEdge(0, 1, 4); g.addEdge(0, 7, 8); g.addEdge(1, 2, 8); g.addEdge(1, 7, 11); g.addEdge(2, 3, 7); g.addEdge(2, 8, 2); g.addEdge(2, 5, 4); g.addEdge(3, 4, 9); g.addEdge(3, 5, 14); g.addEdge(4, 5, 10); g.addEdge(5, 6, 2); g.addEdge(6, 7, 1); g.addEdge(6, 8, 6); g.addEdge(7, 8, 7); cout << g.FindMinimumCycle() << endl; return 0; }
Python3
# Python3 program to find shortest weighted # cycle in undirected graph from sys import maxsize INF = int(0x3f3f3f3f) class Edge: def __init__(self, u: int, v: int, weight: int) -> None: self.u = u self.v = v self.weight = weight # Weighted undirected Graph class Graph: def __init__(self, V: int) -> None: self.V = V self.adj = [[] for _ in range(V)] # Used to store all edge information self.edge = [] # Function add edge to graph def addEdge(self, u: int, v: int, w: int) -> None: self.adj[u].append((v, w)) self.adj[v].append((u, w)) # Add Edge to edge list e = Edge(u, v, w) self.edge.append(e) # Function remove edge from undirected graph def removeEdge(self, u: int, v: int, w: int) -> None: self.adj[u].remove((v, w)) self.adj[v].remove((u, w)) # Find the shortest path from source # to sink using Dijkstra’s shortest # path algorithm [ Time complexity # O(E logV )] def ShortestPath(self, u: int, v: int) -> int: # Create a set to store vertices that # are being preprocessed setds = set() # Create a vector for distances and # initialize all distances as infinite (INF) dist = [INF] * self.V # Insert source itself in Set and # initialize its distance as 0. setds.add((0, u)) dist[u] = 0 # Looping till all shortest distance are # finalized then setds will become empty while (setds): # The first vertex in Set is the minimum # distance vertex, extract it from set. tmp = setds.pop() # Vertex label is stored in second of # pair (it has to be done this way to # keep the vertices sorted distance # (distance must be first item in pair) uu = tmp[1] # 'i' is used to get all adjacent # vertices of a vertex for i in self.adj[uu]: # Get vertex label and weight of # current adjacent of u. vv = i[0] weight = i[1] # If there is shorter path to v through u. if (dist[vv] > dist[uu] + weight): # If the distance of v is not INF then # it must be in our set, so removing it # and inserting again with updated less # distance. Note : We extract only those # vertices from Set for which distance # is finalized. So for them, we would # never reach here. if (dist[vv] != INF): if ((dist[vv], vv) in setds): setds.remove((dist[vv], vv)) # Updating distance of v dist[vv] = dist[uu] + weight setds.add((dist[vv], vv)) # Return shortest path from # current source to sink return dist[v] # Function return minimum weighted cycle def FindMinimumCycle(self) -> int: min_cycle = maxsize E = len(self.edge) for i in range(E): # Current Edge information e = self.edge[i] # Get current edge vertices which we currently # remove from graph and then find shortest path # between these two vertex using Dijkstra’s # shortest path algorithm . self.removeEdge(e.u, e.v, e.weight) # Minimum distance between these two vertices distance = self.ShortestPath(e.u, e.v) # To make a cycle we have to add weight of # currently removed edge if this is the # shortest cycle then update min_cycle min_cycle = min(min_cycle, distance + e.weight) # Add current edge back to the graph self.addEdge(e.u, e.v, e.weight) # Return shortest cycle return min_cycle # Driver Code if __name__ == "__main__": V = 9 g = Graph(V) # Making above shown graph g.addEdge(0, 1, 4) g.addEdge(0, 7, 8) g.addEdge(1, 2, 8) g.addEdge(1, 7, 11) g.addEdge(2, 3, 7) g.addEdge(2, 8, 2) g.addEdge(2, 5, 4) g.addEdge(3, 4, 9) g.addEdge(3, 5, 14) g.addEdge(4, 5, 10) g.addEdge(5, 6, 2) g.addEdge(6, 7, 1) g.addEdge(6, 8, 6) g.addEdge(7, 8, 7) print(g.FindMinimumCycle()) # This code is contributed by sanjeev2552
14
Tiempo Complejidad : O( E ( E log V ) )
Para cada arista, ejecutamos el algoritmo de ruta más corta de Dijkstra, por lo que en todo el tiempo la complejidad E 2 logV.
En el conjunto 2 | discutiremos optimizar el algoritmo para encontrar un ciclo de peso mínimo en un gráfico no dirigido.
Este artículo es una contribución de Nishant Singh . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA