Dada la raíz de un árbol de búsqueda binario y K como entrada, encuentre el K-ésimo elemento más pequeño en BST.
Por ejemplo, en el siguiente BST, si k = 3, la salida debería ser 10, y si k = 5, la salida debería ser 14.
Método 1: Usando Inorder Traversal (tiempo O(n) y espacio auxiliar O(h))
El recorrido en orden de un BST atraviesa los Nodes en orden creciente. Así que la idea es atravesar el árbol en orden. Mientras atraviesa, realice un seguimiento del recuento de los Nodes visitados. Si el conteo se convierte en k, imprima el Node.
C++
// A simple inorder traversal based C++ program to find k-th // smallest element in a BST. #include <iostream> using namespace std; // A BST node struct Node { int data; Node *left, *right; Node(int x) { data = x; left = right = NULL; } }; // Recursive function to insert an key into BST Node* insert(Node* root, int x) { if (root == NULL) return new Node(x); if (x < root->data) root->left = insert(root->left, x); else if (x > root->data) root->right = insert(root->right, x); return root; } // Function to find k'th smallest element in BST // Here count denotes the number of nodes processed so far int count = 0; Node* kthSmallest(Node* root, int& k) { // base case if (root == NULL) return NULL; // search in left subtree Node* left = kthSmallest(root->left, k); // if k'th smallest is found in left subtree, return it if (left != NULL) return left; // if current element is k'th smallest, return it count++; if (count == k) return root; // else search in right subtree return kthSmallest(root->right, k); } // Function to print k'th smallest element in BST void printKthSmallest(Node* root, int k) { // maintain index to count number of nodes processed so far Node* res = kthSmallest(root, k); if (res == NULL) cout << "There are less than k nodes in the BST"; else cout << "K-th Smallest Element is " << res->data; } // main function int main() { Node* root = NULL; int keys[] = { 20, 8, 22, 4, 12, 10, 14 }; for (int x : keys) root = insert(root, x); int k = 3; printKthSmallest(root, k); return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
C
// A simple inorder traversal based C++ program to find k-th // smallest element in a BST. #include <stdio.h> #include <stdlib.h> // A BST node typedef struct Node { int data; struct Node *left, *right; } Node; struct Node* new_node(int x) { struct Node* p = malloc(sizeof(struct Node)); p->data = x; p->left = NULL; p->right = NULL; return p; } // Recursive function to insert an key into BST Node* insert(Node* root, int x) { if (root == NULL) return new_node(x); if (x < root->data) root->left = insert(root->left, x); else if (x > root->data) root->right = insert(root->right, x); return root; } // Function to find k'th smallest element in BST // Here count denotes the number of nodes processed so far int count = 0; Node* kthSmallest(Node* root, int k) { // base case if (root == NULL) return NULL; // search in left subtree Node* left = kthSmallest(root->left, k); // if k'th smallest is found in left subtree, return it if (left != NULL) return left; // if current element is k'th smallest, return it count++; if (count == k) return root; // else search in right subtree return kthSmallest(root->right, k); } // Function to print k'th smallest element in BST void printKthSmallest(Node* root, int k) { // maintain index to count number of nodes processed so far Node* res = kthSmallest(root, k); if (res == NULL) printf("There are less than k nodes in the BST"); else printf("K-th Smallest Element is %d", res->data); } // main function int main() { Node* root = NULL; int keys[] = { 20, 8, 22, 4, 12, 10, 14 }; int keys_size = sizeof(keys) / sizeof(keys[0]); for (int i = 0; i < keys_size; i++) root = insert(root, keys[i]); int k = 3; printKthSmallest(root, k); return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
Java
// A simple inorder traversal based Java program // to find k-th smallest element in a BST. import java.io.*; // A BST node class Node { int data; Node left, right; Node(int x) { data = x; left = right = null; } } class GFG { static int count = 0; // Recursive function to insert an key into BST public static Node insert(Node root, int x) { if (root == null) return new Node(x); if (x < root.data) root.left = insert(root.left, x); else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest element in BST // Here count denotes the number of nodes processed so far public static Node kthSmallest(Node root, int k) { // base case if (root == null) return null; // search in left subtree Node left = kthSmallest(root.left, k); // if k'th smallest is found in left subtree, return it if (left != null) return left; // if current element is k'th smallest, return it count++; if (count == k) return root; // else search in right subtree return kthSmallest(root.right, k); } // Function to find k'th largest element in BST public static void printKthSmallest(Node root, int k) { Node res = kthSmallest(root, k); if (res == null) System.out.println("There are less than k nodes in the BST"); else System.out.println("K-th Smallest Element is " + res.data); } public static void main(String[] args) { Node root = null; int keys[] = { 20, 8, 22, 4, 12, 10, 14 }; for (int x : keys) root = insert(root, x); int k = 3; printKthSmallest(root, k); } } // This code is contributed by Aditya Kumar (adityakumar129)
Python3
# A simple inorder traversal based Python3 # program to find k-th smallest element # in a BST. # A BST node class Node: def __init__(self, key): self.data = key self.left = None self.right = None # Recursive function to insert an key into BST def insert(root, x): if (root == None): return Node(x) if (x < root.data): root.left = insert(root.left, x) elif (x > root.data): root.right = insert(root.right, x) return root # Function to find k'th largest element # in BST. Here count denotes the number # of nodes processed so far def kthSmallest(root): global k # Base case if (root == None): return None # Search in left subtree left = kthSmallest(root.left) # If k'th smallest is found in # left subtree, return it if (left != None): return left # If current element is k'th # smallest, return it k -= 1 if (k == 0): return root # Else search in right subtree return kthSmallest(root.right) # Function to find k'th largest element in BST def printKthSmallest(root): # Maintain index to count number # of nodes processed so far count = 0 res = kthSmallest(root) if (res == None): print("There are less than k nodes in the BST") else: print("K-th Smallest Element is ", res.data) # Driver code if __name__ == '__main__': root = None keys = [ 20, 8, 22, 4, 12, 10, 14 ] for x in keys: root = insert(root, x) k = 3 printKthSmallest(root) # This code is contributed by mohit kumar 29
C#
// A simple inorder traversal // based C# program to find // k-th smallest element in a BST. using System; // A BST node class Node{ public int data; public Node left, right; public Node(int x) { data = x; left = right = null; } } class GFG{ static int count = 0; // Recursive function to // insert an key into BST public static Node insert(Node root, int x) { if (root == null) return new Node(x); if (x < root.data) root.left = insert(root.left, x); else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest // element in BST. Here count // denotes the number of nodes // processed so far public static Node kthSmallest(Node root, int k) { // base case if (root == null) return null; // search in left subtree Node left = kthSmallest(root.left, k); // if k'th smallest is found // in left subtree, return it if (left != null) return left; // if current element is // k'th smallest, return it count++; if (count == k) return root; // else search in right subtree return kthSmallest(root.right, k); } // Function to find k'th largest // element in BST public static void printKthSmallest(Node root, int k) { // Maintain an index to // count number of nodes // processed so far count = 0; Node res = kthSmallest(root, k); if (res == null) Console.WriteLine("There are less " + "than k nodes in the BST"); else Console.WriteLine("K-th Smallest" + " Element is " + res.data); } // Driver code public static void Main(String[] args) { Node root = null; int []keys = {20, 8, 22, 4, 12, 10, 14}; foreach (int x in keys) root = insert(root, x); int k = 3; printKthSmallest(root, k); } } // This code is contributed by gauravrajput1
Javascript
<script> // A simple inorder traversal based Javascript program // to find k-th smallest element in a BST. // A BST node class Node { constructor(x) { this.data = x; this.left = null; this.right = null; } } let count = 0; // Recursive function to insert an key into BST function insert(root,x) { if (root == null) return new Node(x); if (x < root.data) root.left = insert(root.left, x); else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest element in BST // Here count denotes the number // of nodes processed so far function kthSmallest(root,k) { // base case if (root == null) return null; // search in left subtree let left = kthSmallest(root.left, k); // if k'th smallest is found in left subtree, return it if (left != null) return left; // if current element is k'th smallest, return it count++; if (count == k) return root; // else search in right subtree return kthSmallest(root.right, k); } // Function to find k'th largest element in BST function printKthSmallest(root,k) { // maintain an index to count number of // nodes processed so far count = 0; let res = kthSmallest(root, k); if (res == null) document.write("There are less " + "than k nodes in the BST"); else document.write("K-th Smallest" + " Element is " + res.data); } let root=null; let key=[20, 8, 22, 4, 12, 10, 14 ]; for(let i=0;i<key.length;i++) { root = insert(root, key[i]); } let k = 3; printKthSmallest(root, k); // This code is contributed by unknown2108 </script>
K-th Smallest Element is 10
Podemos optimizar el espacio utilizando Morris Traversal . Consulte el elemento más pequeño K’th en BST usando O (1) Extra Space para obtener más detalles.
Método 2: Estructura de datos de árbol aumentado (O(h) Complejidad de tiempo y O(h) espacio auxiliar)
La idea es mantener el rango de cada Node. Podemos realizar un seguimiento de los elementos en el subárbol izquierdo de cada Node mientras construimos el árbol. Como necesitamos el K-ésimo elemento más pequeño, podemos mantener el número de elementos del subárbol izquierdo en cada Node.
Suponga que la raíz tiene Nodes ‘lCount’ en su subárbol izquierdo. Si K = lCount + 1, la raíz es el K-ésimo Node. Si K < lCuenta + 1, continuaremos nuestra búsqueda (recursión) del K-ésimo elemento más pequeño en el subárbol izquierdo de la raíz. Si K > lCount + 1, continuamos nuestra búsqueda en el subárbol derecho del (K – lCount – 1)-ésimo elemento más pequeño. Tenga en cuenta que solo necesitamos el recuento de elementos en el subárbol izquierdo.
C++
// A simple inorder traversal based C++ program to find k-th // smallest element in a BST. #include <iostream> using namespace std; // A BST node struct Node { int data; Node *left, *right; int lCount; Node(int x) { data = x; left = right = NULL; lCount = 0; } }; // Recursive function to insert an key into BST Node* insert(Node* root, int x) { if (root == NULL) return new Node(x); // If a node is inserted in left subtree, then lCount of // this node is increased. For simplicity, we are // assuming that all keys (tried to be inserted) are // distinct. if (x < root->data) { root->left = insert(root->left, x); root->lCount++; } else if (x > root->data) root->right = insert(root->right, x); return root; } // Function to find k'th smallest element in BST // Here count denotes the number of nodes processed so far Node* kthSmallest(Node* root, int k) { // base case if (root == NULL) return NULL; int count = root->lCount + 1; if (count == k) return root; if (count > k) return kthSmallest(root->left, k); // else search in right subtree return kthSmallest(root->right, k - count); } // main function int main() { Node* root = NULL; int keys[] = { 20, 8, 22, 4, 12, 10, 14 }; for (int x : keys) root = insert(root, x); int k = 4; Node* res = kthSmallest(root, k); if (res == NULL) cout << "There are less than k nodes in the BST"; else cout << "K-th Smallest Element is " << res->data; return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
C
// A simple inorder traversal based C++ program to find k-th // smallest element in a BST. #include <stdio.h> #include <stdlib.h> // A BST node typedef struct Node { int data; struct Node *left, *right; int lCount; } Node; Node* new_node(int x) { Node* newNode = malloc(sizeof(Node)); newNode->data = x; newNode->left = NULL; newNode->right = NULL; return newNode; } // Recursive function to insert an key into BST Node* insert(Node* root, int x) { if (root == NULL) return new_node(x); // If a node is inserted in left subtree, then lCount of // this node is increased. For simplicity, we are // assuming that all keys (tried to be inserted) are // distinct. if (x < root->data) { root->left = insert(root->left, x); root->lCount++; } else if (x > root->data) root->right = insert(root->right, x); return root; } // Function to find k'th smallest element in BST // Here count denotes the number of nodes processed so far Node* kthSmallest(Node* root, int k) { // base case if (root == NULL) return NULL; int count = root->lCount + 1; if (count == k) return root; if (count > k) return kthSmallest(root->left, k); // else search in right subtree return kthSmallest(root->right, k - count); } // main function int main() { Node* root = NULL; int keys[] = { 20, 8, 22, 4, 12, 10, 14 }; int keys_size = sizeof(keys) / sizeof(keys[0]); for (int i = 0; i < keys_size; i++) root = insert(root, keys[i]); int k = 4; Node* res = kthSmallest(root, k); if (res == NULL) printf("There are less than k nodes in the BST"); else printf("K-th Smallest Element is %d", res->data); return 0; } // This code is contributed by Aditya Kumar (adityakumar129)
Java
// A simple inorder traversal based Java program // to find k-th smallest element in a BST. import java.io.*; import java.util.*; // A BST node class Node { int data; Node left, right; int lCount; Node(int x) { data = x; left = right = null; lCount = 0; } } class Gfg { // Recursive function to insert an key into BST public static Node insert(Node root, int x) { if (root == null) return new Node(x); // If a node is inserted in left subtree, then // lCount of this node is increased. For simplicity, // we are assuming that all keys (tried to be // inserted) are distinct. if (x < root.data) { root.left = insert(root.left, x); root.lCount++; } else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest element in BST // Here count denotes the number of nodes processed so far public static Node kthSmallest(Node root, int k) { // base case if (root == null) return null; int count = root.lCount + 1; if (count == k) return root; if (count > k) return kthSmallest(root.left, k); // else search in right subtree return kthSmallest(root.right, k - count); } // main function public static void main(String args[]) { Node root = null; int keys[] = { 20, 8, 22, 4, 12, 10, 14 }; for (int x : keys) root = insert(root, x); int k = 4; Node res = kthSmallest(root, k); if (res == null) System.out.println("There are less than k nodes in the BST"); else System.out.println("K-th Smallest Element is " + res.data); } } // This code is contributed by Aditya Kumar (adityakumar129)
Python3
# A simple inorder traversal based Python3 # program to find k-th smallest element in a BST. # A BST node class newNode: def __init__(self, x): self.data = x self.left = None self.right = None self.lCount = 0 # Recursive function to insert # an key into BST def insert(root, x): if (root == None): return newNode(x) # If a node is inserted in left subtree, # then lCount of this node is increased. # For simplicity, we are assuming that # all keys (tried to be inserted) are # distinct. if (x < root.data): root.left = insert(root.left, x) root.lCount += 1 elif (x > root.data): root.right = insert(root.right, x); return root # Function to find k'th largest element # in BST. Here count denotes the number # of nodes processed so far def kthSmallest(root, k): # Base case if (root == None): return None count = root.lCount + 1 if (count == k): return root if (count > k): return kthSmallest(root.left, k) # Else search in right subtree return kthSmallest(root.right, k - count) # Driver code if __name__ == '__main__': root = None keys = [ 20, 8, 22, 4, 12, 10, 14 ] for x in keys: root = insert(root, x) k = 4 res = kthSmallest(root, k) if (res == None): print("There are less than k nodes in the BST") else: print("K-th Smallest Element is", res.data) # This code is contributed by bgangwar59
C#
// A simple inorder traversal based C# program // to find k-th smallest element in a BST. using System; // A BST node public class Node { public int data; public Node left, right; public int lCount; public Node(int x) { data = x; left = right = null; lCount = 0; } } class GFG{ // Recursive function to insert an key into BST public static Node insert(Node root, int x) { if (root == null) return new Node(x); // If a node is inserted in left subtree, // then lCount of this node is increased. // For simplicity, we are assuming that // all keys (tried to be inserted) are // distinct. if (x < root.data) { root.left = insert(root.left, x); root.lCount++; } else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest element // in BST. Here count denotes the number // of nodes processed so far public static Node kthSmallest(Node root, int k) { // Base case if (root == null) return null; int count = root.lCount + 1; if (count == k) return root; if (count > k) return kthSmallest(root.left, k); // Else search in right subtree return kthSmallest(root.right, k - count); } // Driver Code public static void Main(String[] args) { Node root = null; int[] keys = { 20, 8, 22, 4, 12, 10, 14 }; foreach(int x in keys) root = insert(root, x); int k = 4; Node res = kthSmallest(root, k); if (res == null) Console.WriteLine("There are less " + "than k nodes in the BST"); else Console.WriteLine("K-th Smallest" + " Element is " + res.data); } } // This code is contributed by aashish1995
Javascript
<script> // A simple inorder traversal based // Javascript program to find k-th // smallest element in a BST. // A BST node class Node { constructor(x) { this.data = x; this.left = null; this.right = null; this.lCount = 0; } } // Recursive function to insert an key into BST function insert(root, x) { if (root == null) return new Node(x); // If a node is inserted in left subtree, // then lCount of this node is increased. // For simplicity, we are assuming that // all keys (tried to be inserted) are // distinct. if (x < root.data) { root.left = insert(root.left, x); root.lCount++; } else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest element // in BST. Here count denotes the number // of nodes processed so far function kthSmallest(root, k) { // Base case if (root == null) return null; let count = root.lCount + 1; if (count == k) return root; if (count > k) return kthSmallest(root.left, k); // Else search in right subtree return kthSmallest(root.right, k - count); } // Driver code let root = null; let keys = [ 20, 8, 22, 4, 12, 10, 14 ]; for(let x = 0; x < keys.length; x++) root = insert(root, keys[x]); let k = 4; let res = kthSmallest(root, k); if (res == null) document.write("There are less than k " + "nodes in the BST" + "</br>"); else document.write("K-th Smallest" + " Element is " + res.data); // This code is contributed by divyeshrabadiya07 </script>
K-th Smallest Element is 12
Complejidad temporal: O(h) donde h es la altura del árbol.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA