Dado un número N, la tarea es encontrar el n-ésimo término de la serie
5, 2, 19, 13, 41, 31, 71, 57….
Se da que el valor de n puede oscilar entre 1 y 10000.
Ejemplos:
Input: N = 4 Output:13 Input: N = 15 Output:272
Enfoque: El problema parece muy difícil pero el enfoque es muy simple. Si el valor de n se da como un número impar, el enésimo término será ( ( n + 1 ) ^ 2 ) + n.
De lo contrario, será ( ( n – 1 ) ^ 2 ) + n.
Implementación:
C++
// C++ program to find nth term of // the series 5 2 13 41 #include<bits/stdc++.h> using namespace std; // function to calculate nth term of the series int nthTermOfTheSeries(int n) { // to store the nth term of series int nthTerm; // if n is even number if (n % 2 == 0) nthTerm = pow(n - 1, 2) + n; // if n is odd number else nthTerm = pow(n + 1, 2) + n; // return nth term return nthTerm; } // Driver code int main() { int n; n = 8; cout << nthTermOfTheSeries(n) << endl; n = 12; cout << nthTermOfTheSeries(n) << endl; n = 102; cout << nthTermOfTheSeries(n) << endl; n = 999; cout << nthTermOfTheSeries(n) << endl; n = 9999; cout << nthTermOfTheSeries(n) << endl; return 0; } // This code is contributed // by Akanksha Rai
C
// C program to find nth term of // the series 5 2 13 41 #include <math.h> #include <stdio.h> // function to calculate nth term of the series int nthTermOfTheSeries(int n) { // to store the nth term of series int nthTerm; // if n is even number if (n % 2 == 0) nthTerm = pow(n - 1, 2) + n; // if n is odd number else nthTerm = pow(n + 1, 2) + n; // return nth term return nthTerm; } // Driver code int main() { int n; n = 8; printf("%d\n", nthTermOfTheSeries(n)); n = 12; printf("%d\n", nthTermOfTheSeries(n)); n = 102; printf("%d\n", nthTermOfTheSeries(n)); n = 999; printf("%d\n", nthTermOfTheSeries(n)); n = 9999; printf("%d\n", nthTermOfTheSeries(n)); return 0; }
Java
// Java program to find nth term of the series 5 2 13 41 import java.lang.Math; class GFG { // function to calculate nth term of the series static long nthTermOfTheSeries(int n) { // to store the nth term of series long nthTerm; // if n is even number if (n % 2 == 0) nthTerm = (long)Math.pow(n - 1, 2) + n; // if n is odd number else nthTerm = (long)Math.pow(n + 1, 2) + n; // return nth term return nthTerm; } // Driver code public static void main(String[] args) { int n; n = 8; System.out.println( nthTermOfTheSeries(n)); n = 12; System.out.println( nthTermOfTheSeries(n)); n = 102; System.out.println( nthTermOfTheSeries(n)); n = 999; System.out.println( nthTermOfTheSeries(n)); n = 9999; System.out.println( nthTermOfTheSeries(n)); //This code is contributed by 29AjayKumar } }
Python3
# Python3 program to find nth term # of the series 5 2 13 41 from math import pow # function to calculate nth term # of the series def nthTermOfTheSeries(n): # to store the nth term of series # if n is even number if (n % 2 == 0): nthTerm = pow(n - 1, 2) + n # if n is odd number else: nthTerm = pow(n + 1, 2) + n # return nth term return nthTerm # Driver code if __name__ == '__main__': n = 8 print(int(nthTermOfTheSeries(n))) n = 12 print(int(nthTermOfTheSeries(n))) n = 102 print(int(nthTermOfTheSeries(n))) n = 999 print(int(nthTermOfTheSeries(n))) n = 9999 print(int(nthTermOfTheSeries(n))) # This code is contributed by # Shashank_Sharma
C#
// C# program to find nth term // of the series 5 2 13 41 using System; class GFG { // function to calculate // nth term of the series static long nthTermOfTheSeries(int n) { // to store the nth term of series long nthTerm; // if n is even number if (n % 2 == 0) nthTerm = (long)Math.Pow(n - 1, 2) + n; // if n is odd number else nthTerm = (long)Math.Pow(n + 1, 2) + n; // return nth term return nthTerm; } // Driver code public static void Main() { int n; n = 8; Console.WriteLine(nthTermOfTheSeries(n)); n = 12; Console.WriteLine( nthTermOfTheSeries(n)); n = 102; Console.WriteLine( nthTermOfTheSeries(n)); n = 999; Console.WriteLine( nthTermOfTheSeries(n)); n = 9999; Console.WriteLine( nthTermOfTheSeries(n)); } } // This code is contributed by Ryuga
PHP
<?php // Php program to find nth term of // the series 5 2 13 41 // function to calculate nth term // of the series function nthTermOfTheSeries($n) { // if n is even number if ($n % 2 == 0) $nthTerm = pow($n - 1, 2) + $n; // if n is odd number else $nthTerm = pow($n + 1, 2) + $n; // return nth term return $nthTerm; } // Driver code $n = 8; echo nthTermOfTheSeries($n) . "\n"; $n = 12; echo nthTermOfTheSeries($n) . "\n"; $n = 102; echo nthTermOfTheSeries($n) . "\n"; $n = 999; echo nthTermOfTheSeries($n) . "\n"; $n = 9999; echo nthTermOfTheSeries($n) . "\n"; // This code is contributed by ita_c ?>
Javascript
<script> // Javascript program to find nth term of // the series 5 2 13 41 // function to calculate nth term of the series function nthTermOfTheSeries(n) { // to store the nth term of series let nthTerm; // if n is even number if (n % 2 == 0) nthTerm = Math.pow(n - 1, 2) + n; // if n is odd number else nthTerm = Math.pow(n + 1, 2) + n; // return nth term return nthTerm; } // Driver code let n; n = 8; document.write(nthTermOfTheSeries(n) + "<br>"); n = 12; document.write(nthTermOfTheSeries(n) + "<br>"); n = 102; document.write(nthTermOfTheSeries(n) + "<br>"); n = 999; document.write(nthTermOfTheSeries(n) + "<br>"); n = 9999; document.write(nthTermOfTheSeries(n) + "<br>"); // This code is contributed by rishavmahato348. </script>
Producción:
57 133 10303 1000999 100009999
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por Vivek.Pandit y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA