Dada una lista enlazada, la tarea es encontrar el Node equilibrado en una lista enlazada. Un Node balanceado es un Node donde la suma de todos los Nodes a su izquierda es igual a la suma de todos los Nodes a su derecha, si no se encuentra tal Node, imprima -1 .
Ejemplos:
Entrada: 1 -> 2 -> 7 -> 10 -> 1 -> 6 -> 3 -> NULL
Salida: 10 La
suma de los Nodes a la izquierda de 10 es 1 + 2 + 7 = 10
Y, a la derecha de 10 es 1 + 6 + 3 = 10Entrada: 1 -> 5 -> 5 -> 10 -> -3 -> NULL
Salida: -1
Acercarse:
- Primero, encuentre la suma total de todos los valores de los Nodes.
- Ahora, recorra la lista enlazada una por una y, mientras la recorre, realice un seguimiento de la suma del valor de todos los Nodes anteriores y encuentre la suma del Node restante restando el valor del Node actual y la suma del valor de los Nodes anteriores de la suma total.
- Compare ambas sumas, si son iguales, entonces el Node actual es el Node requerido; de lo contrario, imprima -1.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Structure of a node of linked list class Node { public: int data; Node* next; Node(int data) { this->data = data; this->next = NULL; } }; // Push the new node to front of // the linked list Node* push(Node* head, int data) { // Return new node as head if // head is empty if (head == NULL) { return new Node(data); } Node* temp = new Node(data); temp->next = head; head = temp; return head; } // Function to find the balanced node int findBalancedNode(Node* head) { int tsum = 0; Node* curr_node = head; // Traverse through all node // to find the total sum while (curr_node != NULL) { tsum += curr_node->data; curr_node = curr_node->next; } // Set current_sum and remaining // sum to zero int current_sum = 0; int remaining_sum = 0; curr_node = head; // Traversing the list to // check balanced node while (curr_node != NULL) { remaining_sum = tsum - (current_sum + curr_node->data); // If sum of the nodes on the left and // the current node is equal to the sum // of the nodes on the right if (current_sum == remaining_sum) { return curr_node->data; } current_sum += curr_node->data; curr_node = curr_node->next; } return -1; } // Driver code int main() { Node* head = NULL; head = push(head, 3); head = push(head, 6); head = push(head, 1); head = push(head, 10); head = push(head, 7); head = push(head, 2); head = push(head, 1); cout << findBalancedNode(head); return 0; } // This code is contributed by divyehrabadiya07
Java
// Java implementation of the approach class GFG{ // Structure of a node of linked list static class Node { int data; Node next; Node(int data) { this.data = data; this.next = null; } } // Push the new node to front of // the linked list static Node push(Node head, int data) { // Return new node as head if // head is empty if (head == null) { return new Node(data); } Node temp = new Node(data); temp.next = head; head = temp; return head; } // Function to find the balanced node static int findBalancedNode(Node head) { int tsum = 0; Node curr_node = head; // Traverse through all node // to find the total sum while (curr_node != null) { tsum += curr_node.data; curr_node = curr_node.next; } // Set current_sum and remaining // sum to zero int current_sum = 0; int remaining_sum = 0; curr_node = head; // Traversing the list to // check balanced node while (curr_node != null) { remaining_sum = tsum - (current_sum + curr_node.data); // If sum of the nodes on the left and // the current node is equal to the sum // of the nodes on the right if (current_sum == remaining_sum) { return curr_node.data; } current_sum += curr_node.data; curr_node = curr_node.next; } return -1; } // Driver code public static void main(String []args) { Node head = null; head = push(head, 3); head = push(head, 6); head = push(head, 1); head = push(head, 10); head = push(head, 7); head = push(head, 2); head = push(head, 1); System.out.println(findBalancedNode(head)); } } // This code is contributed by rutvik_56
Python3
# Python3 implementation of the approach import sys import math # Structure of a node of linked list class Node: def __init__(self, data): self.next = None self.data = data # Push the new node to front of the linked list def push(head, data): # Return new node as head if head is empty if not head: return Node(data) temp = Node(data) temp.next = head head = temp return head # Function to find the balanced node def findBalancedNode(head): tsum = 0 curr_node = head # Traverse through all node # to find the total sum while curr_node: tsum+= curr_node.data curr_node = curr_node.next # Set current_sum and remaining sum to zero current_sum, remaining_sum = 0, 0 curr_node = head # Traversing the list to check balanced node while(curr_node): remaining_sum = tsum-(current_sum + curr_node.data) # If sum of the nodes on the left and the current node # is equal to the sum of the nodes on the right if current_sum == remaining_sum: return curr_node.data current_sum+= curr_node.data curr_node = curr_node.next return -1 # Driver code if __name__=='__main__': head = None head = push(head, 3) head = push(head, 6) head = push(head, 1) head = push(head, 10) head = push(head, 7) head = push(head, 2) head = push(head, 1) print(findBalancedNode(head))
C#
// C# implementation of the approach using System; using System.Collections; using System.Collections.Generic; class GFG { // Structure of a node of linked list class Node { public int data; public Node next; public Node(int data) { this.data = data; this.next = null; } } // Push the new node to front of // the linked list static Node push(Node head, int data) { // Return new node as head if // head is empty if (head == null) { return new Node(data); } Node temp = new Node(data); temp.next = head; head = temp; return head; } // Function to find the balanced node static int findBalancedNode(Node head) { int tsum = 0; Node curr_node = head; // Traverse through all node // to find the total sum while (curr_node != null) { tsum += curr_node.data; curr_node = curr_node.next; } // Set current_sum and remaining // sum to zero int current_sum = 0; int remaining_sum = 0; curr_node = head; // Traversing the list to // check balanced node while (curr_node != null) { remaining_sum = tsum - (current_sum + curr_node.data); // If sum of the nodes on the left and // the current node is equal to the sum // of the nodes on the right if (current_sum == remaining_sum) { return curr_node.data; } current_sum += curr_node.data; curr_node = curr_node.next; } return -1; } // Driver code public static void Main(string []args) { Node head = null; head = push(head, 3); head = push(head, 6); head = push(head, 1); head = push(head, 10); head = push(head, 7); head = push(head, 2); head = push(head, 1); Console.Write(findBalancedNode(head)); } } // This code is contributed by pratham76
Javascript
<script> // Javascript implementation of the approach // Structure of a node of linked list class Node { constructor(data) { this.data = data; this.next = null; } } // Push the new node to front of // the linked list function push( head, data) { // Return new node as head if // head is empty if (head == null) { return new Node(data); } var temp = new Node(data); temp.next = head; head = temp; return head; } // Function to find the balanced node function findBalancedNode( head) { let tsum = 0; let curr_node = head; // Traverse through all node // to find the total sum while (curr_node != null) { tsum += curr_node.data; curr_node = curr_node.next; } // Set current_sum and remaining // sum to zero let current_sum = 0; let remaining_sum = 0; curr_node = head; // Traversing the list to // check balanced node while (curr_node != null) { remaining_sum = tsum - (current_sum + curr_node.data); // If sum of the nodes on the left and // the current node is equal to the sum // of the nodes on the right if (current_sum == remaining_sum) { return curr_node.data; } current_sum += curr_node.data; curr_node = curr_node.next; } return -1; } // Driver Code var head = null; head = push(head, 3); head = push(head, 6); head = push(head, 1); head = push(head, 10); head = push(head, 7); head = push(head, 2); head = push(head, 1); document.write(findBalancedNode(head)); // This code is contributed by Jana_sayantan. </script>
10
Complejidad temporal: O(n)
Espacio auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por Vikash Kumar 37 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA