Encuentre el Node con valor mínimo en un árbol de búsqueda binaria – Part 1

Esto es bastante simple. Simplemente atraviese el Node de la raíz a la izquierda de forma recursiva hasta que la izquierda sea NULL. El Node cuya izquierda es NULL es el Node con valor mínimo. 
 

BST_LCA

C++

//C++ program to find minimum value node in binary search Tree. 
#include <bits/stdc++.h> 
using namespace std; 
  
/* A binary tree node has data, pointer to left child 
and a pointer to right child */
struct node 
{ 
    int data; 
    struct node* left; 
    struct node* right; 
}; 
  
/* Helper function that allocates a new node 
with the given data and NULL left and right 
pointers. */
struct node* newNode(int data) 
{ 
struct node* node = (struct node*) 
                    malloc(sizeof(struct node)); 
node->data = data; 
node->left = NULL; 
node->right = NULL; 
  
return(node); 
} 
  
/* Give a binary search tree and a number, 
inserts a new node with the given number in 
the correct place in the tree. Returns the new 
root pointer which the caller should then use 
(the standard trick to avoid using reference 
parameters). */
struct node* insert(struct node* node, int data) 
{ 
/* 1. If the tree is empty, return a new, 
    single node */
if (node == NULL) 
    return(newNode(data)); 
else
{ 
    /* 2. Otherwise, recur down the tree */
    if (data <= node->data) 
        node->left = insert(node->left, data); 
    else
        node->right = insert(node->right, data); 
  
    /* return the (unchanged) node pointer */
    return node; 
} 
} 
  
/* Given a non-empty binary search tree, 
return the minimum data value found in that 
tree. Note that the entire tree does not need 
to be searched. */
int minValue(struct node* node) 
{ 
struct node* current = node; 
  
/* loop down to find the leftmost leaf */
while (current->left != NULL) 
{ 
    current = current->left; 
} 
return(current->data); 
} 
  
/* Driver Code*/
int main() 
{ 
struct node* root = NULL; 
root = insert(root, 4); 
insert(root, 2); 
insert(root, 1); 
insert(root, 3); 
insert(root, 6); 
insert(root, 5); 
  
cout << "\n Minimum value in BST is " << minValue(root); 
getchar(); 
return 0; 
} 
  
// This code is contributed by Mukul Singh. 

C

#include <stdio.h>
#include<stdlib.h>
  
/* A binary tree node has data, pointer to left child 
   and a pointer to right child */
struct node 
{
    int data;
    struct node* left;
    struct node* right;
};
  
/* Helper function that allocates a new node 
with the given data and NULL left and right 
pointers. */
struct node* newNode(int data) 
{
  struct node* node = (struct node*)
                       malloc(sizeof(struct node));
  node->data  = data;
  node->left  = NULL;
  node->right = NULL;
    
  return(node);
}
  
/* Give a binary search tree and a number, 
inserts a new node with the given number in 
the correct place in the tree. Returns the new 
root pointer which the caller should then use 
(the standard trick to avoid using reference 
parameters). */
struct node* insert(struct node* node, int data) 
{
  /* 1. If the tree is empty, return a new,     
      single node */
  if (node == NULL) 
    return(newNode(data));  
  else 
  {
    /* 2. Otherwise, recur down the tree */
    if (data <= node->data) 
        node->left  = insert(node->left, data);
    else 
        node->right = insert(node->right, data);
    
    /* return the (unchanged) node pointer */
    return node; 
  }
}
  
/* Given a non-empty binary search tree,  
return the minimum data value found in that 
tree. Note that the entire tree does not need 
to be searched. */
int minValue(struct node* node) {
  struct node* current = node;
  
  /* loop down to find the leftmost leaf */
  while (current->left != NULL) {
    current = current->left;
  }
  return(current->data);
}
  
/* Driver program to test sameTree function*/    
int main()
{
  struct node* root = NULL;
  root = insert(root, 4);
  insert(root, 2);
  insert(root, 1);
  insert(root, 3);
  insert(root, 6);
  insert(root, 5);  
  
  printf("\n Minimum value in BST is %d", minValue(root));
  getchar();
  return 0;    
}

Java

// Java program to find minimum value node in Binary Search Tree
  
// A binary tree node
class Node {
  
    int data;
    Node left, right;
  
    Node(int d) {
        data = d;
        left = right = null;
    }
}
  
class BinaryTree {
  
    static Node head;
      
    /* Given a binary search tree and a number, 
     inserts a new node with the given number in 
     the correct place in the tree. Returns the new 
     root pointer which the caller should then use 
     (the standard trick to avoid using reference 
     parameters). */
    Node insert(Node node, int data) {
          
        /* 1. If the tree is empty, return a new,     
         single node */
        if (node == null) {
            return (new Node(data));
        } else {
              
            /* 2. Otherwise, recur down the tree */
            if (data <= node.data) {
                node.left = insert(node.left, data);
            } else {
                node.right = insert(node.right, data);
            }
  
            /* return the (unchanged) node pointer */
            return node;
        }
    }
  
    /* Given a non-empty binary search tree,  
     return the minimum data value found in that 
     tree. Note that the entire tree does not need 
     to be searched. */
    int minvalue(Node node) {
        Node current = node;
  
        /* loop down to find the leftmost leaf */
        while (current.left != null) {
            current = current.left;
        }
        return (current.data);
    }
      
    // Driver program to test above functions
    public static void main(String[] args) {
        BinaryTree tree = new BinaryTree();
        Node root = null;
        root = tree.insert(root, 4);
        tree.insert(root, 2);
        tree.insert(root, 1);
        tree.insert(root, 3);
        tree.insert(root, 6);
        tree.insert(root, 5);
  
        System.out.println("Minimum value of BST is " + tree.minvalue(root));
    }
}
  
// This code is contributed by Mayank Jaiswal

Python3

# Python program to find the node with minimum value in bst
  
# A binary tree node
class Node:
  
    # Constructor to create a new node
    def __init__(self, key):
        self.data = key
        self.left = None
        self.right = None
  
""" Give a binary search tree and a number, 
inserts a new node with the given number in 
the correct place in the tree. Returns the new 
root pointer which the caller should then use 
(the standard trick to avoid using reference 
parameters). """
def insert(node, data):
  
    # 1. If the tree is empty, return a new,
    # single node
    if node is None:
        return (Node(data))
  
    else:
        # 2. Otherwise, recur down the tree
        if data <= node.data:
            node.left = insert(node.left, data)
        else:
            node.right = insert(node.right, data)
  
        # Return the (unchanged) node pointer
        return node
  
""" Given a non-empty binary search tree,  
return the minimum data value found in that 
tree. Note that the entire tree does not need 
to be searched. """
def minValue(node):
    current = node
  
    # loop down to find the leftmost leaf
    while(current.left is not None):
        current = current.left
  
    return current.data
  
# Driver program
root = None
root = insert(root,4)
insert(root,2)
insert(root,1)
insert(root,3)
insert(root,6)
insert(root,5)
  
print ("\nMinimum value in BST is %d"  %(minValue(root)))
  
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)

C#

using System;
  
// C# program to find minimum value node in Binary Search Tree 
  
// A binary tree node 
public class Node
{
  
    public int data;
    public Node left, right;
  
    public Node(int d)
    {
        data = d;
        left = right = null;
    }
}
  
public class BinaryTree
{
  
    public static Node head;
  
    /* Given a binary search tree and a number,  
     inserts a new node with the given number in  
     the correct place in the tree. Returns the new  
     root pointer which the caller should then use  
     (the standard trick to avoid using reference  
     parameters). */
    public virtual Node insert(Node node, int data)
    {
  
        /* 1. If the tree is empty, return a new,      
         single node */
        if (node == null)
        {
            return (new Node(data));
        }
        else
        {
  
            /* 2. Otherwise, recur down the tree */
            if (data <= node.data)
            {
                node.left = insert(node.left, data);
            }
            else
            {
                node.right = insert(node.right, data);
            }
  
            /* return the (unchanged) node pointer */
            return node;
        }
    }
  
    /* Given a non-empty binary search tree,   
     return the minimum data value found in that  
     tree. Note that the entire tree does not need  
     to be searched. */
    public virtual int minvalue(Node node)
    {
        Node current = node;
  
        /* loop down to find the leftmost leaf */
        while (current.left != null)
        {
            current = current.left;
        }
        return (current.data);
    }
  
    // Driver program to test above functions 
    public static void Main(string[] args)
    {
        BinaryTree tree = new BinaryTree();
        Node root = null;
        root = tree.insert(root, 4);
        tree.insert(root, 2);
        tree.insert(root, 1);
        tree.insert(root, 3);
        tree.insert(root, 6);
        tree.insert(root, 5);
  
        Console.WriteLine("Minimum value of BST is " + tree.minvalue(root));
    }
}
  
  // This code is contributed by Shrikant13

PHP

<?php
// PHP program to find the node with 
// minimum value in bst
  
// create a binary tree
class node 
{
    private $node, $left, $right;
    function __construct($node) 
    {
        $this->node = $node;
        $left = $right = NULL;
    }
  
    // set the left node in tree
    function set_left($left) 
    {
        $this->left = $left;
    }
  
    // set the right node in tree
    function set_right($right) 
    {
        $this->right = $right;
    }
  
    // get left node 
    function get_left()
    {
        return $this->left;
    }
  
    // get right node 
    function get_right()
    {
        return $this->right;
    }
  
    // get value of current node
    function get_node()
    {
        return $this->node;
    }
      
}
  
// Find the node with minimum value 
// in a Binary Search Tree
function get_minimum_value($node) 
{
    /*travel till last left node to 
      get the minimum value*/
    while ($node->get_left() != NULL) 
    {
        $node = $node->get_left();
    }
    return $node->get_node();
}
  
// code to creating a tree 
$node = new node(4);
$lnode = new node(2); 
$lnode->set_left(new node(1));
$lnode->set_right(new node(3));
$rnode = new node(6);
$rnode->set_left(new node(5));
$node->set_left($lnode);
$node->set_right($rnode);
  
$minimum_value = get_minimum_value($node);
echo 'Minimum value of BST is '. 
                 $minimum_value;
  
// This code is contributed
// by Deepika Pathak
?>

Javascript

<script>
  
    // JavaScript program to find minimum 
    // value node in Binary Search Tree
      
    class Node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
      
    let head;
        
    /* Given a binary search tree and a number, 
     inserts a new node with the given number in 
     the correct place in the tree. Returns the new 
     root pointer which the caller should then use 
     (the standard trick to avoid using reference 
     parameters). */
    function insert(node, data) {
            
        /* 1. If the tree is empty, return a new,     
         single node */
        if (node == null) {
            return (new Node(data));
        } else {
                
            /* 2. Otherwise, recur down the tree */
            if (data <= node.data) {
                node.left = insert(node.left, data);
            } else {
                node.right = insert(node.right, data);
            }
    
            /* return the (unchanged) node pointer */
            return node;
        }
    }
    
    /* Given a non-empty binary search tree,  
     return the minimum data value found in that 
     tree. Note that the entire tree does not need 
     to be searched. */
    function minvalue(node) {
        if (node === null) return null;
        let current = node;
    
        /* loop down to find the leftmost leaf */
        while (current.left != null) {
            current = current.left;
        }
        return (current.data);
    }
      
    let root = null;
    root = insert(root, 4);
    insert(root, 2);
    insert(root, 1);
    insert(root, 3);
    insert(root, 6);
    insert(root, 5);
  
    document.write("Minimum value in BST is " + minvalue(root));
  
</script>

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *