Encuentre el subárbol perfecto más grande en un árbol binario dado

Dado un árbol binario, la tarea es encontrar el tamaño del subárbol perfecto más grande en el árbol binario dado. 

Árbol binario perfecto: un árbol binario es un árbol binario perfecto en el que todos los Nodes internos tienen dos hijos y todas las hojas están al mismo nivel.

Ejemplos: 

Input: 
      1
    /   \
   2     3
 /  \   /
4    5 6
Output:
Size : 3
Inorder Traversal : 4 2 5
The following sub-tree is the maximum size Perfect sub-tree 
   2  
 /  \
4    5

Input:
         50
      /      \
   30         60
  /   \      /    \ 
 5    20   45      70
          /  \     /  \
         10   85  65  80
Output:
Size : 7
Inorder Traversal : 10 45 85 60 65 70 80

Enfoque: simplemente atraviese el árbol de abajo hacia arriba. Luego, al subir en recursión de hijo a padre, podemos pasar información sobre subárboles al padre. El padre puede usar la información pasada para hacer la prueba Perfect Tree (para el Node padre) solo en tiempo constante. Un subárbol izquierdo debe decirle al padre si es un árbol binario perfecto o no y también debe pasar la altura máxima del árbol binario perfecto que proviene del hijo izquierdo. Del mismo modo, el subárbol derecho también debe pasar la altura máxima del árbol binario perfecto que proviene del hijo derecho. 

Los subárboles deben pasar la siguiente información al árbol para encontrar el subárbol perfecto más grande para que podamos comparar la altura máxima con los datos de los padres para verificar la propiedad del árbol binario perfecto.  

  1. Hay una variable booleana para comprobar si el subárbol secundario izquierdo o derecho es perfecto o no.
  2. De las llamadas secundarias izquierda y derecha en recursividad, descubrimos si el subárbol principal es perfecto o no siguiendo 2 casos: 
    • Si tanto el hijo izquierdo como el hijo derecho son árboles binarios perfectos y tienen la misma altura, entonces el padre también es un árbol binario perfecto con altura más uno de sus hijos.
    • Si el caso anterior no es cierto, entonces el padre no puede ser un árbol binario perfecto y simplemente devuelve el árbol binario perfecto de tamaño máximo proveniente del subárbol izquierdo o derecho al comparar sus alturas.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Node structure of the tree
struct node {
    int data;
    struct node* left;
    struct node* right;
};
 
// To create a new node
struct node* newNode(int data)
{
    struct node* node = (struct node*)malloc(sizeof(struct node));
    node->data = data;
    node->left = NULL;
    node->right = NULL;
    return node;
};
 
// Structure for return type of
// function findPerfectBinaryTree
struct returnType {
 
    // To store if sub-tree is perfect or not
    bool isPerfect;
 
    // Height of the tree
    int height;
 
    // Root of biggest perfect sub-tree
    node* rootTree;
};
 
// Function to return the biggest
// perfect binary sub-tree
returnType findPerfectBinaryTree(struct node* root)
{
 
    // Declaring returnType that
    // needs to be returned
    returnType rt;
 
    // If root is NULL then it is considered as
    // perfect binary tree of height 0
    if (root == NULL) {
        rt.isPerfect = true;
        rt.height = 0;
        rt.rootTree = NULL;
        return rt;
    }
 
    // Recursive call for left and right child
    returnType lv = findPerfectBinaryTree(root->left);
    returnType rv = findPerfectBinaryTree(root->right);
 
    // If both left and right sub-trees are perfect and
    // there height is also same then sub-tree root
    // is also perfect binary subtree with height
    // plus one of its child sub-trees
    if (lv.isPerfect && rv.isPerfect && lv.height == rv.height) {
        rt.height = lv.height + 1;
        rt.isPerfect = true;
        rt.rootTree = root;
        return rt;
    }
 
    // Else this sub-tree cannot be a perfect binary tree
    // and simply return the biggest sized perfect sub-tree
    // found till now in the left or right sub-trees
    rt.isPerfect = false;
    rt.height = max(lv.height, rv.height);
    rt.rootTree = (lv.height > rv.height ? lv.rootTree : rv.rootTree);
    return rt;
}
 
// Function to print the inorder traversal of the tree
void inorderPrint(node* root)
{
    if (root != NULL) {
        inorderPrint(root->left);
        cout << root->data << " ";
        inorderPrint(root->right);
    }
}
 
// Driver code
int main()
{
    // Create tree
    struct node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->right->left = newNode(6);
 
    // Get the biggest sizes perfect binary sub-tree
    struct returnType ans = findPerfectBinaryTree(root);
 
    // Height of the found sub-tree
    int h = ans.height;
 
    cout << "Size : " << pow(2, h) - 1 << endl;
 
    // Print the inorder traversal of the found sub-tree
    cout << "Inorder Traversal : ";
    inorderPrint(ans.rootTree);
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
// Node structure of the tree
static class node
{
    int data;
    node left;
    node right;
};
 
// To create a new node
static node newNode(int data)
{
    node node = new node();
    node.data = data;
    node.left = null;
    node.right = null;
    return node;
};
 
// Structure for return type of
// function findPerfectBinaryTree
static class returnType
{
 
    // To store if sub-tree is perfect or not
    boolean isPerfect;
 
    // Height of the tree
    int height;
 
    // Root of biggest perfect sub-tree
    node rootTree;
};
 
// Function to return the biggest
// perfect binary sub-tree
static returnType findPerfectBinaryTree(node root)
{
 
    // Declaring returnType that
    // needs to be returned
    returnType rt = new returnType();
 
    // If root is null then it is considered as
    // perfect binary tree of height 0
    if (root == null)
    {
        rt.isPerfect = true;
        rt.height = 0;
        rt.rootTree = null;
        return rt;
    }
 
    // Recursive call for left and right child
    returnType lv = findPerfectBinaryTree(root.left);
    returnType rv = findPerfectBinaryTree(root.right);
 
    // If both left and right sub-trees are perfect and
    // there height is also same then sub-tree root
    // is also perfect binary subtree with height
    // plus one of its child sub-trees
    if (lv.isPerfect && rv.isPerfect &&
        lv.height == rv.height)
    {
        rt.height = lv.height + 1;
        rt.isPerfect = true;
        rt.rootTree = root;
        return rt;
    }
 
    // Else this sub-tree cannot be a perfect binary tree
    // and simply return the biggest sized perfect sub-tree
    // found till now in the left or right sub-trees
    rt.isPerfect = false;
    rt.height = Math.max(lv.height, rv.height);
    rt.rootTree = (lv.height > rv.height ?
                             lv.rootTree : rv.rootTree);
    return rt;
}
 
// Function to print the
// inorder traversal of the tree
static void inorderPrint(node root)
{
    if (root != null)
    {
        inorderPrint(root.left);
        System.out.print(root.data + " ");
        inorderPrint(root.right);
    }
}
 
// Driver code
public static void main(String[] args)
{
    // Create tree
    node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
 
    // Get the biggest sizes perfect binary sub-tree
    returnType ans = findPerfectBinaryTree(root);
 
    // Height of the found sub-tree
    int h = ans.height;
 
    System.out.println("Size : " +
                      (Math.pow(2, h) - 1));
 
    // Print the inorder traversal of the found sub-tree
    System.out.print("Inorder Traversal : ");
    inorderPrint(ans.rootTree);
}
}
 
// This code is contributed by 29AjayKumar

Python3

# Python3 implementation of above approach
 
# Tree node
class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None
 
# To create a new node
def newNode(data):
 
    node = Node(0)
    node.data = data
    node.left = None
    node.right = None
    return node
 
# Structure for return type of
# function findPerfectBinaryTree
class returnType:
 
    def __init__(self):
         
        # To store if sub-tree is perfect or not
        isPerfect = 0
 
        # Height of the tree
        height = 0
 
        # Root of biggest perfect sub-tree
        rootTree = 0
 
# Function to return the biggest
# perfect binary sub-tree
def findPerfectBinaryTree(root):
 
    # Declaring returnType that
    # needs to be returned
    rt = returnType()
 
    # If root is None then it is considered as
    # perfect binary tree of height 0
    if (root == None) :
        rt.isPerfect = True
        rt.height = 0
        rt.rootTree = None
        return rt
     
    # Recursive call for left and right child
    lv = findPerfectBinaryTree(root.left)
    rv = findPerfectBinaryTree(root.right)
 
    # If both left and right sub-trees are perfect and
    # there height is also same then sub-tree root
    # is also perfect binary subtree with height
    # plus one of its child sub-trees
    if (lv.isPerfect and rv.isPerfect and
        lv.height == rv.height) :
        rt.height = lv.height + 1
        rt.isPerfect = True
        rt.rootTree = root
        return rt
     
    # Else this sub-tree cannot be a perfect binary tree
    # and simply return the biggest sized perfect sub-tree
    # found till now in the left or right sub-trees
    rt.isPerfect = False
    rt.height = max(lv.height, rv.height)
    if (lv.height > rv.height ):
        rt.rootTree = lv.rootTree
    else :
        rt.rootTree = rv.rootTree
    return rt
 
# Function to print the inorder traversal of the tree
def inorderPrint(root):
 
    if (root != None) :
        inorderPrint(root.left)
        print (root.data, end = " ")
        inorderPrint(root.right)
     
# Driver code
 
# Create tree
root = newNode(1)
root.left = newNode(2)
root.right = newNode(3)
root.left.left = newNode(4)
root.left.right = newNode(5)
root.right.left = newNode(6)
 
# Get the biggest sizes perfect binary sub-tree
ans = findPerfectBinaryTree(root)
 
# Height of the found sub-tree
h = ans.height
 
print ("Size : " , pow(2, h) - 1)
 
# Print the inorder traversal of the found sub-tree
print ("Inorder Traversal : ", end = " ")
inorderPrint(ans.rootTree)
 
# This code is contributed by Arnab Kundu

C#

// C# implementation of the approach
using System;
 
class GFG
{
     
// Node structure of the tree
public class node
{
    public int data;
    public node left;
    public node right;
};
 
// To create a new node
static node newNode(int data)
{
    node node = new node();
    node.data = data;
    node.left = null;
    node.right = null;
    return node;
}
 
// Structure for return type of
// function findPerfectBinaryTree
public class returnType
{
 
    // To store if sub-tree is perfect or not
    public bool isPerfect;
 
    // Height of the tree
    public int height;
 
    // Root of biggest perfect sub-tree
    public node rootTree;
};
 
// Function to return the biggest
// perfect binary sub-tree
static returnType findPerfectBinaryTree(node root)
{
 
    // Declaring returnType that
    // needs to be returned
    returnType rt = new returnType();
 
    // If root is null then it is considered as
    // perfect binary tree of height 0
    if (root == null)
    {
        rt.isPerfect = true;
        rt.height = 0;
        rt.rootTree = null;
        return rt;
    }
 
    // Recursive call for left and right child
    returnType lv = findPerfectBinaryTree(root.left);
    returnType rv = findPerfectBinaryTree(root.right);
 
    // If both left and right sub-trees are perfect and
    // there height is also same then sub-tree root
    // is also perfect binary subtree with height
    // plus one of its child sub-trees
    if (lv.isPerfect && rv.isPerfect &&
        lv.height == rv.height)
    {
        rt.height = lv.height + 1;
        rt.isPerfect = true;
        rt.rootTree = root;
        return rt;
    }
 
    // Else this sub-tree cannot be a perfect binary tree
    // and simply return the biggest sized perfect sub-tree
    // found till now in the left or right sub-trees
    rt.isPerfect = false;
    rt.height = Math.Max(lv.height, rv.height);
    rt.rootTree = (lv.height > rv.height ?
                             lv.rootTree : rv.rootTree);
    return rt;
}
 
// Function to print the
// inorder traversal of the tree
static void inorderPrint(node root)
{
    if (root != null)
    {
        inorderPrint(root.left);
        Console.Write(root.data + " ");
        inorderPrint(root.right);
    }
}
 
// Driver code
public static void Main(String[] args)
{
    // Create tree
    node root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
 
    // Get the biggest sizes perfect binary sub-tree
    returnType ans = findPerfectBinaryTree(root);
 
    // Height of the found sub-tree
    int h = ans.height;
 
    Console.WriteLine("Size : " +
                     (Math.Pow(2, h) - 1));
 
    // Print the inorder traversal of the found sub-tree
    Console.Write("Inorder Traversal : ");
    inorderPrint(ans.rootTree);
}
}
 
// This code is contributed by Princi Singh

Javascript

<script>
 
    // JavaScript program to print postorder
    // traversal iteratively
     
    // Node structure of the tree
    class node
    {
        constructor(data) {
           this.left = null;
           this.right = null;
           this.data = data;
        }
    }
     
    // To create a new node
    function newNode(data)
    {
        let Node = new node(data);
        return Node;
    }
     
    // Structure for return type of
    // function findPerfectBinaryTree
    class returnType
    {
        constructor(data) {
           this.isPerfect;
           this.height;
           this.rootTree;
        }
    }
 
    // Function to return the biggest
    // perfect binary sub-tree
    function findPerfectBinaryTree(root)
    {
 
        // Declaring returnType that
        // needs to be returned
        let rt = new returnType();
 
        // If root is null then it is considered as
        // perfect binary tree of height 0
        if (root == null)
        {
            rt.isPerfect = true;
            rt.height = 0;
            rt.rootTree = null;
            return rt;
        }
 
        // Recursive call for left and right child
        let lv = findPerfectBinaryTree(root.left);
        let rv = findPerfectBinaryTree(root.right);
 
        // If both left and right sub-trees are perfect and
        // there height is also same then sub-tree root
        // is also perfect binary subtree with height
        // plus one of its child sub-trees
        if (lv.isPerfect && rv.isPerfect &&
            lv.height == rv.height)
        {
            rt.height = lv.height + 1;
            rt.isPerfect = true;
            rt.rootTree = root;
            return rt;
        }
 
        // Else this sub-tree cannot be a perfect binary tree
        // and simply return the biggest sized perfect sub-tree
        // found till now in the left or right sub-trees
        rt.isPerfect = false;
        rt.height = Math.max(lv.height, rv.height);
        rt.rootTree = (lv.height > rv.height ?
                                 lv.rootTree : rv.rootTree);
        return rt;
    }
 
    // Function to print the
    // inorder traversal of the tree
    function inorderPrint(root)
    {
        if (root != null)
        {
            inorderPrint(root.left);
            document.write(root.data + " ");
            inorderPrint(root.right);
        }
    }
     
    // Create tree
    let root = newNode(1);
    root.left = newNode(2);
    root.right = newNode(3);
    root.left.left = newNode(4);
    root.left.right = newNode(5);
    root.right.left = newNode(6);
   
    // Get the biggest sizes perfect binary sub-tree
    let ans = findPerfectBinaryTree(root);
   
    // Height of the found sub-tree
    let h = ans.height;
   
    document.write("Size : " + (Math.pow(2, h) - 1) + "</br>");
   
    // Print the inorder traversal of the found sub-tree
    document.write("Inorder Traversal : ");
    inorderPrint(ans.rootTree);
 
</script>
Producción: 

Size : 3
Inorder Traversal : 4 2 5

 

Publicación traducida automáticamente

Artículo escrito por tyagikartik4282 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *