Dado un árbol binario especial cuyos Nodes hoja están conectados para formar una lista circular doblemente enlazada, encuentre su altura.
Por ejemplo,
1 / \ 2 3 / \ 4 5 / 6
En el árbol binario anterior, 6, 5 y 3 son Nodes hoja y forman una lista circular doblemente enlazada. Aquí, el puntero izquierdo del Node hoja actuará como puntero anterior de la lista circular doblemente enlazada y su puntero derecho actuará como el siguiente puntero de la lista circular doblemente enlazada.
La idea es seguir un enfoque similar al que usamos para encontrar la altura de un árbol binario normal. Calculamos recursivamente la altura de los subárboles izquierdo y derecho de un Node y asignamos la altura al Node como el máximo de las alturas de dos hijos más 1. Pero los hijos izquierdo y derecho de un Node hoja son nulos para los árboles binarios normales. Pero, aquí el Node de hoja es un Node de lista circular doblemente vinculado. Entonces, para que un Node sea un Node hoja, verificamos si la derecha de la izquierda del Node apunta al Node y si la izquierda de la derecha también apunta al Node en sí.
A continuación se muestra la implementación de la idea anterior:
C++
// C++ program to calculate height of a special tree // whose leaf nodes forms a circular doubly linked list #include <bits/stdc++.h> using namespace std; // A binary tree Node struct Node { int data; Node *left, *right; }; // function to check if given node is a leaf node or node bool isLeaf(Node* node) { // If given node's left's right is pointing to given // node and its right's left is pointing to the node // itself then it's a leaf return node->left && node->left->right == node && node->right && node->right->left == node; } /* Compute the height of a tree -- the number of Nodes along the longest path from the root node down to the farthest leaf node.*/ int maxDepth(Node* node) { // if node is NULL, return 0 if (node == NULL) return 0; // if node is a leaf node, return 1 if (isLeaf(node)) return 1; // compute the depth of each subtree and take maximum return 1 + max(maxDepth(node->left), maxDepth(node->right)); } // Helper function that allocates a new tree node Node* newNode(int data) { Node* node = new Node; node->data = data; node->left = NULL; node->right = NULL; return node; } // Driver code int main() { Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->left->left->left = newNode(6); // Given tree contains 3 leaf nodes Node* L1 = root->left->left->left; Node* L2 = root->left->right; Node* L3 = root->right; // create circular doubly linked list out of // leaf nodes of the tree // set next pointer of linked list L1->right = L2, L2->right = L3, L3->right = L1; // set prev pointer of linked list L3->left = L2, L2->left = L1, L1->left = L3; // calculate height of the tree cout << "Height of tree is " << maxDepth(root); return 0; }
Java
// Java implementation to calculate height of a special tree // whose leaf nodes forms a circular doubly linked list import java.io.*; import java.util.*; // User defined node class class Node { int data; Node left, right; // Constructor to create a new tree node Node(int key) { data = key; left = right = null; } } class GFG { // function to check if given node is a leaf node or // node static boolean isLeaf(Node node) { // If given node's left's right is pointing to given // node and its right's left is pointing to the node // itself then it's a leaf return (node.left != null && node.left.right == node && node.right != null && node.right.left == node); } /* Compute the height of a tree -- the number of Nodes along the longest path from the root node down to the farthest leaf node.*/ static int maxDepth(Node node) { // if node is NULL, return 0 if (node == null) return 0; // if node is a leaf node, return 1 if (isLeaf(node)) return 1; // compute the depth of each subtree and take // maximum return 1 + Math.max(maxDepth(node.left), maxDepth(node.right)); } // Driver code public static void main(String args[]) { Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.left.left.left = new Node(6); // Given tree contains 3 leaf nodes Node L1 = root.left.left.left; Node L2 = root.left.right; Node L3 = root.right; // create circular doubly linked list out of // leaf nodes of the tree // set next pointer of linked list L1.right = L2; L2.right = L3; L3.right = L1; // set prev pointer of linked list L3.left = L2; L2.left = L1; L1.left = L3; // calculate height of the tree System.out.println("Height of tree is " + maxDepth(root)); } } // This code is contributed by rachana soma
Python3
""" program to Delete a Tree """ # Helper function that allocates a new # node with the given data and None # left and right pointers. class newNode: # Construct to create a new node def __init__(self, key): self.data = key self.left = None self.right = None # function to check if given node is a leaf node or node def isLeaf(node): # If given node's left's right is pointing to given node # and its right's left is pointing to the node itself # then it's a leaf return node.left and node.left.right == node and \ node.right and node.right.left == node """ Compute the height of a tree -- the number of Nodes along the longest path from the root node down to the farthest leaf node.""" def maxDepth(node): # if node is None, return 0 if (node == None): return 0 # if node is a leaf node, return 1 if (isLeaf(node)): return 1 # compute the depth of each subtree and take maximum return 1 + max(maxDepth(node.left), maxDepth(node.right)) # Driver Code if __name__ == '__main__': root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) root.left.left.left = newNode(6) # Given tree contains 3 leaf nodes L1 = root.left.left.left L2 = root.left.right L3 = root.right # create circular doubly linked list out of # leaf nodes of the tree # set next pointer of linked list L1.right = L2 L2.right = L3 L3.right = L1 # set prev pointer of linked list L3.left = L2 L2.left = L1 L1.left = L3 # calculate height of the tree print("Height of tree is ", maxDepth(root)) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10)
C#
// C# implementation to calculate height of a special tree // whose leaf nodes forms a circular doubly linked list using System; // User defined node class public class Node { public int data; public Node left, right; // Constructor to create a new tree node public Node(int key) { data = key; left = right = null; } } public class GFG { // function to check if given node is a leaf node or // node static bool isLeaf(Node node) { // If given node's left's right is pointing to given // node and its right's left is pointing to the node // itself then it's a leaf return (node.left != null && node.left.right == node && node.right != null && node.right.left == node); } /* Compute the height of a tree -- the number of Nodes along the longest path from the root node down to the farthest leaf node.*/ static int maxDepth(Node node) { // if node is NULL, return 0 if (node == null) return 0; // if node is a leaf node, return 1 if (isLeaf(node)) return 1; // compute the depth of each subtree and take // maximum return 1 + Math.Max(maxDepth(node.left), maxDepth(node.right)); } // Driver code public static void Main(String[] args) { Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.left.left.left = new Node(6); // Given tree contains 3 leaf nodes Node L1 = root.left.left.left; Node L2 = root.left.right; Node L3 = root.right; // create circular doubly linked list out of // leaf nodes of the tree // set next pointer of linked list L1.right = L2; L2.right = L3; L3.right = L1; // set prev pointer of linked list L3.left = L2; L2.left = L1; L1.left = L3; // calculate height of the tree Console.WriteLine("Height of tree is " + maxDepth(root)); } } // This code is contributed by 29AjayKumar
Javascript
<script> // Javascript implementation to calculate height of a special tree // whose leaf nodes forms a circular doubly linked list class Node { constructor(key) { this.data = key; this.left = this.right = null; } } // function to check if given node is a leaf node or // node function isLeaf(node) { // If given node's left's right is pointing to given // node and its right's left is pointing to the node // itself then it's a leaf return (node.left != null && node.left.right == node && node.right != null && node.right.left == node); } /* Compute the height of a tree -- the number of Nodes along the longest path from the root node down to the farthest leaf node.*/ function maxDepth(node) { // if node is NULL, return 0 if (node == null) return 0; // if node is a leaf node, return 1 if (isLeaf(node)) return 1; // compute the depth of each subtree and take // maximum return 1 + Math.max(maxDepth(node.left), maxDepth(node.right)); } // Driver code let root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.left.left.left = new Node(6); // Given tree contains 3 leaf nodes let L1 = root.left.left.left; let L2 = root.left.right; let L3 = root.right; // create circular doubly linked list out of // leaf nodes of the tree // set next pointer of linked list L1.right = L2; L2.right = L3; L3.right = L1; // set prev pointer of linked list L3.left = L2; L2.left = L1; L1.left = L3; // calculate height of the tree document.write("Height of tree is " + maxDepth(root)); // This code is contributed by rag2127 </script>
Height of tree is 4
Este artículo es una contribución de Aditya Goel . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA