Encuentre la hoja de suma máxima a la ruta raíz en un árbol binario

    Dado un árbol binario, encuentre la ruta de suma máxima desde una hoja hasta la raíz. Por ejemplo, en el siguiente árbol, hay tres caminos de hoja a raíz 8->-2->10, -4->-2->10 y 7->10. Las sumas de estos tres caminos son 16, 4 y 17 respectivamente. El máximo de ellos es 17 y la ruta para el máximo es 7->10.

                      10
                   /      \
                 -2        7
               /   \     
              8     -4    
    

    Solución
    1) Primero encuentre el Node hoja que está en la ruta de suma máxima. En el siguiente código, getTargetLeaf() hace esto asignando el resultado a *target_leaf_ref.
    2) Una vez que tenemos el Node hoja de destino, podemos imprimir la ruta de suma máxima atravesando el árbol. En el siguiente código, printPath() hace esto.

    La función principal es maxSumPath() que utiliza las dos funciones anteriores para obtener la solución completa.

    C++

    // CPP program to find maximum sum leaf to root
    // path in Binary Tree
    #include <bits/stdc++.h>
    using namespace std;
      
    /* A tree node structure */
    class node {
    public:
        int data;
        node* left;
        node* right;
    };
      
    // A utility function that prints all nodes
    // on the path from root to target_leaf
    bool printPath(node* root,
                   node* target_leaf)
    {
        // base case
        if (root == NULL)
            return false;
      
        // return true if this node is the target_leaf
        // or target leaf is present in one of its
        // descendants
        if (root == target_leaf || printPath(root->left, target_leaf) || 
                                   printPath(root->right, target_leaf)) {
            cout << root->data << " ";
            return true;
        }
      
        return false;
    }
      
    // This function Sets the target_leaf_ref to refer
    // the leaf node of the maximum path sum. Also,
    // returns the max_sum using max_sum_ref
    void getTargetLeaf(node* Node, int* max_sum_ref,
                       int curr_sum, node** target_leaf_ref)
    {
        if (Node == NULL)
            return;
      
        // Update current sum to hold sum of nodes on path
        // from root to this node
        curr_sum = curr_sum + Node->data;
      
        // If this is a leaf node and path to this node has
        // maximum sum so far, then make this node target_leaf
        if (Node->left == NULL && Node->right == NULL) {
            if (curr_sum > *max_sum_ref) {
                *max_sum_ref = curr_sum;
                *target_leaf_ref = Node;
            }
        }
      
        // If this is not a leaf node, then recur down
        // to find the target_leaf
        getTargetLeaf(Node->left, max_sum_ref, curr_sum,
                      target_leaf_ref);
        getTargetLeaf(Node->right, max_sum_ref, curr_sum,
                      target_leaf_ref);
    }
      
    // Returns the maximum sum and prints the nodes on max
    // sum path
    int maxSumPath(node* Node)
    {
        // base case
        if (Node == NULL)
            return 0;
      
        node* target_leaf;
        int max_sum = INT_MIN;
      
        // find the target leaf and maximum sum
        getTargetLeaf(Node, &max_sum, 0, &target_leaf);
      
        // print the path from root to the target leaf
        printPath(Node, target_leaf);
      
        return max_sum; // return maximum sum
    }
      
    /* Utility function to create a new Binary Tree node */
    node* newNode(int data)
    {
        node* temp = new node;
        temp->data = data;
        temp->left = NULL;
        temp->right = NULL;
        return temp;
    }
      
    /* Driver function to test above functions */
    int main()
    {
        node* root = NULL;
      
        /* Constructing tree given in the above figure */
        root = newNode(10);
        root->left = newNode(-2);
        root->right = newNode(7);
        root->left->left = newNode(8);
        root->left->right = newNode(-4);
      
        cout << "Following are the nodes on the maximum "
                "sum path \n";
        int sum = maxSumPath(root);
        cout << "\nSum of the nodes is " << sum;
        return 0;
    }
      
    // This code is contributed by rathbhupendra

    C

    // C program to find maximum sum leaf to root
    // path in Binary Tree
    #include <limits.h>
    #include <stdbool.h>
    #include <stdio.h>
    #include <stdlib.h>
      
    /* A tree node structure */
    struct node {
        int data;
        struct node* left;
        struct node* right;
    };
      
    // A utility function that prints all nodes
    // on the path from root to target_leaf
    bool printPath(struct node* root,
                   struct node* target_leaf)
    {
        // base case
        if (root == NULL)
            return false;
      
        // return true if this node is the target_leaf
        // or target leaf is present in one of its
        // descendants
        if (root == target_leaf || printPath(root->left, target_leaf) || 
                                   printPath(root->right, target_leaf)) {
            printf("%d ", root->data);
            return true;
        }
      
        return false;
    }
      
    // This function Sets the target_leaf_ref to refer
    // the leaf node of the maximum path sum. Also,
    // returns the max_sum using max_sum_ref
    void getTargetLeaf(struct node* node, int* max_sum_ref,
                       int curr_sum, struct node** target_leaf_ref)
    {
        if (node == NULL)
            return;
      
        // Update current sum to hold sum of nodes on path
        // from root to this node
        curr_sum = curr_sum + node->data;
      
        // If this is a leaf node and path to this node has
        // maximum sum so far, then make this node target_leaf
        if (node->left == NULL && node->right == NULL) {
            if (curr_sum > *max_sum_ref) {
                *max_sum_ref = curr_sum;
                *target_leaf_ref = node;
            }
        }
      
        // If this is not a leaf node, then recur down
        // to find the target_leaf
        getTargetLeaf(node->left, max_sum_ref, curr_sum,
                      target_leaf_ref);
        getTargetLeaf(node->right, max_sum_ref, curr_sum,
                      target_leaf_ref);
    }
      
    // Returns the maximum sum and prints the nodes on max
    // sum path
    int maxSumPath(struct node* node)
    {
        // base case
        if (node == NULL)
            return 0;
      
        struct node* target_leaf;
        int max_sum = INT_MIN;
      
        // find the target leaf and maximum sum
        getTargetLeaf(node, &max_sum, 0, &target_leaf);
      
        // print the path from root to the target leaf
        printPath(node, target_leaf);
      
        return max_sum; // return maximum sum
    }
      
    /* Utility function to create a new Binary Tree node */
    struct node* newNode(int data)
    {
        struct node* temp = (struct node*)malloc(sizeof(struct node));
        temp->data = data;
        temp->left = NULL;
        temp->right = NULL;
        return temp;
    }
      
    /* Driver function to test above functions */
    int main()
    {
        struct node* root = NULL;
      
        /* Constructing tree given in the above figure */
        root = newNode(10);
        root->left = newNode(-2);
        root->right = newNode(7);
        root->left->left = newNode(8);
        root->left->right = newNode(-4);
      
        printf("Following are the nodes on the maximum "
               "sum path \n");
        int sum = maxSumPath(root);
        printf("\nSum of the nodes is %d ", sum);
      
        getchar();
        return 0;
    }

    Java

    // Java program to find maximum sum leaf to root
    // path in Binary Tree
      
    // A Binary Tree node
    class Node {
        int data;
        Node left, right;
      
        Node(int item)
        {
            data = item;
            left = right = null;
        }
    }
      
    // A wrapper class is used so that max_no
    // can be updated among function calls.
    class Maximum {
        int max_no = Integer.MIN_VALUE;
    }
      
    class BinaryTree {
        Node root;
        Maximum max = new Maximum();
        Node target_leaf = null;
      
        // A utility function that prints all nodes on the
        // path from root to target_leaf
        boolean printPath(Node node, Node target_leaf)
        {
            // base case
            if (node == null)
                return false;
      
            // return true if this node is the target_leaf or
            // target leaf is present in one of its descendants
            if (node == target_leaf || printPath(node.left, target_leaf)
                || printPath(node.right, target_leaf)) {
                System.out.print(node.data + " ");
                return true;
            }
      
            return false;
        }
      
        // This function Sets the target_leaf_ref to refer
        // the leaf node of the maximum path sum. Also,
        // returns the max_sum using max_sum_ref
        void getTargetLeaf(Node node, Maximum max_sum_ref,
                           int curr_sum)
        {
            if (node == null)
                return;
      
            // Update current sum to hold sum of nodes on
            // path from root to this node
            curr_sum = curr_sum + node.data;
      
            // If this is a leaf node and path to this node
            // has maximum sum so far, the n make this node
            // target_leaf
            if (node.left == null && node.right == null) {
                if (curr_sum > max_sum_ref.max_no) {
                    max_sum_ref.max_no = curr_sum;
                    target_leaf = node;
                }
            }
      
            // If this is not a leaf node, then recur down
            // to find the target_leaf
            getTargetLeaf(node.left, max_sum_ref, curr_sum);
            getTargetLeaf(node.right, max_sum_ref, curr_sum);
        }
      
        // Returns the maximum sum and prints the nodes on
        // max sum path
        int maxSumPath()
        {
            // base case
            if (root == null)
                return 0;
      
            // find the target leaf and maximum sum
            getTargetLeaf(root, max, 0);
      
            // print the path from root to the target leaf
            printPath(root, target_leaf);
            return max.max_no; // return maximum sum
        }
      
        // driver function to test the above functions
        public static void main(String args[])
        {
            BinaryTree tree = new BinaryTree();
            tree.root = new Node(10);
            tree.root.left = new Node(-2);
            tree.root.right = new Node(7);
            tree.root.left.left = new Node(8);
            tree.root.left.right = new Node(-4);
            System.out.println("Following are the nodes "
                               + "on maximum sum path");
            int sum = tree.maxSumPath();
            System.out.println("");
            System.out.println("Sum of nodes is : " + sum);
        }
    }
    // This code has been contributed by Mayank Jaiswal

    Python3

    # Python3 program to find maximum sum leaf to root
    # path in Binary Tree
      
    # A tree node structure 
    class node :
        def __init__(self):
            self.data = 0
            self.left = None
            self.right = None
      
    # A utility function that prints all nodes
    # on the path from root to target_leaf
    def printPath( root,target_leaf):
      
        # base case
        if (root == None):
            return False
      
        # return True if this node is the target_leaf
        # or target leaf is present in one of its
        # descendants
        if (root == target_leaf or 
            printPath(root.left, target_leaf) or 
            printPath(root.right, target_leaf)) :
            print( root.data, end = " ")
            return True
          
        return False
      
    max_sum_ref = 0
    target_leaf_ref = None
      
    # This function Sets the target_leaf_ref to refer
    # the leaf node of the maximum path sum. Also,
    # returns the max_sum using max_sum_ref
    def getTargetLeaf(Node, curr_sum):
          
        global max_sum_ref
        global target_leaf_ref
          
        if (Node == None):
            return
      
        # Update current sum to hold sum of nodes on path
        # from root to this node
        curr_sum = curr_sum + Node.data
      
        # If this is a leaf node and path to this node has
        # maximum sum so far, then make this node target_leaf
        if (Node.left == None and Node.right == None): 
            if (curr_sum > max_sum_ref) :
                max_sum_ref = curr_sum
                target_leaf_ref = Node
              
        # If this is not a leaf node, then recur down
        # to find the target_leaf
        getTargetLeaf(Node.left, curr_sum)
        getTargetLeaf(Node.right, curr_sum)
      
    # Returns the maximum sum and prints the nodes on max
    # sum path
    def maxSumPath( Node):
          
        global max_sum_ref
        global target_leaf_ref
          
        # base case
        if (Node == None):
            return 0
      
        target_leaf_ref = None
        max_sum_ref = -32676
      
        # find the target leaf and maximum sum
        getTargetLeaf(Node, 0)
          
        # print the path from root to the target leaf
        printPath(Node, target_leaf_ref);
      
        return max_sum_ref; # return maximum sum
      
    # Utility function to create a new Binary Tree node 
    def newNode(data):
      
        temp = node();
        temp.data = data;
        temp.left = None;
        temp.right = None;
        return temp;
      
    # Driver function to test above functions 
      
    root = None;
      
    # Constructing tree given in the above figure 
    root = newNode(10);
    root.left = newNode(-2);
    root.right = newNode(7);
    root.left.left = newNode(8);
    root.left.right = newNode(-4);
      
    print( "Following are the nodes on the maximum sum path ");
    sum = maxSumPath(root);
    print( "\nSum of the nodes is " , sum);
      
    # This code is contributed by Arnab Kundu
      

    C#

    using System;
      
    // C# program to find maximum sum leaf to root
    // path in Binary Tree
      
    // A Binary Tree node
    public class Node {
        public int data;
        public Node left, right;
      
        public Node(int item)
        {
            data = item;
            left = right = null;
        }
    }
      
    // A wrapper class is used so that max_no
    // can be updated among function calls.
    public class Maximum {
        public int max_no = int.MinValue;
    }
      
    public class BinaryTree {
        public Node root;
        public Maximum max = new Maximum();
        public Node target_leaf = null;
      
        // A utility function that prints all nodes on the
        // path from root to target_leaf
        public virtual bool printPath(Node node, Node target_leaf)
        {
            // base case
            if (node == null) {
                return false;
            }
      
            // return true if this node is the target_leaf or
            // target leaf is present in one of its descendants
            if (node == target_leaf || printPath(node.left, target_leaf)
                || printPath(node.right, target_leaf)) {
                Console.Write(node.data + " ");
                return true;
            }
      
            return false;
        }
      
        // This function Sets the target_leaf_ref to refer
        // the leaf node of the maximum path sum. Also,
        // returns the max_sum using max_sum_ref
        public virtual void getTargetLeaf(Node node, Maximum max_sum_ref,
                                          int curr_sum)
        {
            if (node == null) {
                return;
            }
      
            // Update current sum to hold sum of nodes on
            // path from root to this node
            curr_sum = curr_sum + node.data;
      
            // If this is a leaf node and path to this node
            // has maximum sum so far, the n make this node
            // target_leaf
            if (node.left == null && node.right == null) {
                if (curr_sum > max_sum_ref.max_no) {
                    max_sum_ref.max_no = curr_sum;
                    target_leaf = node;
                }
            }
      
            // If this is not a leaf node, then recur down
            // to find the target_leaf
            getTargetLeaf(node.left, max_sum_ref, curr_sum);
            getTargetLeaf(node.right, max_sum_ref, curr_sum);
        }
      
        // Returns the maximum sum and prints the nodes on
        // max sum path
        public virtual int maxSumPath()
        {
            // base case
            if (root == null) {
                return 0;
            }
      
            // find the target leaf and maximum sum
            getTargetLeaf(root, max, 0);
      
            // print the path from root to the target leaf
            printPath(root, target_leaf);
            return max.max_no; // return maximum sum
        }
      
        // driver function to test the above functions
        public static void Main(string[] args)
        {
            BinaryTree tree = new BinaryTree();
            tree.root = new Node(10);
            tree.root.left = new Node(-2);
            tree.root.right = new Node(7);
            tree.root.left.left = new Node(8);
            tree.root.left.right = new Node(-4);
            Console.WriteLine("Following are the nodes "
                              + "on maximum sum path");
            int sum = tree.maxSumPath();
            Console.WriteLine("");
            Console.WriteLine("Sum of nodes is : " + sum);
        }
    }
      
    // This code is contributed by Shrikant13

    Producción:

    Following are the nodes on the maximum sum path
    7 10
    Sum of the nodes is 17
    

    Complejidad de tiempo: la complejidad de tiempo de la solución anterior es O (n) ya que implica el recorrido del árbol dos veces.

    Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *