Encuentra si un punto se encuentra dentro, fuera o en el círculo de tres puntos A, B, C

Dados cuatro puntos no colineales A, B, C y P . La tarea es encontrar si el punto P se encuentra dentro, fuera o en el círculo formado por los puntos A, B y C.
Ejemplos 

Entrada: A = {2, 8}, B = {2, 1}, C = {4, 5}, P = {2, 4}; 
Salida: El punto (2, 4) está dentro del círculo circunscrito.

Entrada: A = {2, 8}, B = {2, 1}, C = {4, 5}, P = {3, 0}; 
Salida: El punto (3, 0) se encuentra fuera del círculo.

Acercarse: 

  • Encuentre el Circuncentro del triángulo formado por los puntos A, B y C por el enfoque discutido en este artículo.
  • Después de obtener los puntos del circuncentro en el paso anterior, encuentra el radio del circuncentro calculando la distancia entre el circuncentro y uno de los puntos de A, B o C usando la siguiente fórmula:
For Point A = (x, y) and Point B = (a, b)
The distance between points A and B is given by:- 
distance = sqrt((x - a)2 + (y - b)2)
  • Dado que conocemos el radio y el circuncentro del círculo y las coordenadas del punto P , encuentre la ubicación del punto P utilizando el enfoque que se analiza en este artículo.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program to find the points
// which lies inside, outside or
// on the circle
#include <bits/stdc++.h>
using namespace std;
 
// Structure Pointer to
// store x and y coordinates
struct point {
    double x, y;
};
 
// Function to find the line given
// two points
void lineFromPoints(point P, point Q,
                    double& a, double& b,
                    double& c)
{
    a = Q.y - P.y;
    b = P.x - Q.x;
    c = a * (P.x) + b * (P.y);
}
 
// Function which converts the
// input line to its perpendicular
// bisector. It also inputs the
// points whose mid-point lies o
// on the bisector
void perpenBisectorFromLine(point P, point Q,
                            double& a, double& b,
                            double& c)
{
 
    // Find the mid point
    point mid_point;
 
    // x coordinates
    mid_point.x = (P.x + Q.x) / 2;
 
    // y coordinates
    mid_point.y = (P.y + Q.y) / 2;
 
    // c = -bx + ay
    c = -b * (mid_point.x)
        + a * (mid_point.y);
 
    // Assign the coefficient of
    // a and b
    double temp = a;
    a = -b;
    b = temp;
}
 
// Returns the intersection point of
// two lines
double LineInterX(double a1, double b1,
                  double c1, double a2,
                  double b2, double c2)
{
 
    // Find determinant
    double determ = a1 * b2 - a2 * b1;
 
    double x = (b2 * c1 - b1 * c2);
    x /= determ;
 
    return x;
}
 
// Returns the intersection point of
// two lines
double LineInterY(double a1, double b1,
                  double c1, double a2,
                  double b2, double c2)
{
 
    // Find determinant
    double determ = a1 * b2 - a2 * b1;
 
    double y = (a1 * c2 - a2 * c1);
    y /= determ;
 
    return y;
}
 
// Function to find the point
// lies inside, outside or on
// the circle
void findPosition(point P, point Q,
                  point R, point D)
{
 
    // Store the coordinates
    // radius of circumcircle
    point r;
 
    // Line PQ is represented
    // as ax + by = c
    double a, b, c;
    lineFromPoints(P, Q, a, b, c);
 
    // Line QR is represented
    // as ex + fy = g
    double e, f, g;
    lineFromPoints(Q, R, e, f, g);
 
    // Converting lines PQ and QR
    // to perpendicular bisectors.
    // After this, L = ax + by = c
    // M = ex + fy = g
    perpenBisectorFromLine(P, Q, a, b, c);
    perpenBisectorFromLine(Q, R, e, f, g);
 
    // The point of intersection
    // of L and M gives r as the
    // circumcenter
    r.x = LineInterX(a, b, c, e, f, g);
    r.y = LineInterY(a, b, c, e, f, g);
 
    // Length of radius
    double q = (r.x - P.x) * (r.x - P.x)
               + (r.y - P.y) * (r.y - P.y);
 
    // Distance between radius
    // and the given point D
    double dis = (r.x - D.x) * (r.x - D.x)
                 + (r.y - D.y) * (r.y - D.y);
 
    // Condition for point lies
    // inside circumcircle
    if (dis < q) {
        cout << "Point (" << D.x << ", "
             << D.y << ") is inside "
             << "the circumcircle";
    }
 
    // Condition for point lies
    // on circumcircle
    else if (dis == q) {
        cout << "Point (" << D.x << ", "
             << D.y << ") lies on the "
             << "circumcircle";
    }
 
    // Condition for point lies
    // outside circumcircle
    else {
        cout << "Point (" << D.x << ", "
             << D.y << ") lies outside"
             << " the circumcircle";
    }
}
 
// Driver Code
int main()
{
    point A, B, C, D;
 
    // Given Points
    A = { 2, 8 };
    B = { 2, 1 };
    C = { 4, 5 };
    D = { 3, 0 };
 
    // Function call to find
    // the point lies inside,
    // outside or on the
    // circle
    findPosition(A, B, C, D);
    return 0;
}

Java

// Java program to find the points
// which lies inside, outside or
// on the circle
class GFG{
  
// Structure Pointer to
// store x and y coordinates
static class point {
    double x, y;
    public point() {
    }
    public point(double x, double y) {
        this.x = x;
        this.y = y;
    }
     
};
  
// Function to find the line given
// two points
static void lineFromPoints(point P, point Q,
                    double a, double b,
                    double c)
{
    a = Q.y - P.y;
    b = P.x - Q.x;
    c = a * (P.x) + b * (P.y);
}
  
// Function which converts the
// input line to its perpendicular
// bisector. It also inputs the
// points whose mid-point lies o
// on the bisector
static void perpenBisectorFromLine(point P, point Q,
                            double a, double b,
                            double c)
{
  
    // Find the mid point
    point mid_point = new point();
  
    // x coordinates
    mid_point.x = (P.x + Q.x) / 2;
  
    // y coordinates
    mid_point.y = (P.y + Q.y) / 2;
  
    // c = -bx + ay
    c = -b * (mid_point.x)
        + a * (mid_point.y);
  
    // Assign the coefficient of
    // a and b
    double temp = a;
    a = -b;
    b = temp;
}
  
// Returns the intersection point of
// two lines
static double LineInterX(double a1, double b1,
                  double c1, double a2,
                  double b2, double c2)
{
  
    // Find determinant
    double determ = a1 * b2 - a2 * b1;
  
    double x = (b2 * c1 - b1 * c2);
    x /= determ;
  
    return x;
}
  
// Returns the intersection point of
// two lines
static double LineInterY(double a1, double b1,
                  double c1, double a2,
                  double b2, double c2)
{
  
    // Find determinant
    double determ = a1 * b2 - a2 * b1;
  
    double y = (a1 * c2 - a2 * c1);
    y /= determ;
  
    return y;
}
  
// Function to find the point
// lies inside, outside or on
// the circle
static void findPosition(point P, point Q,
                  point R, point D)
{
  
    // Store the coordinates
    // radius of circumcircle
    point r = new point();
  
    // Line PQ is represented
    // as ax + by = c
    double a = 0, b = 0, c = 0;
    lineFromPoints(P, Q, a, b, c);
  
    // Line QR is represented
    // as ex + fy = g
    double e = 0, f = 0, g = 0;
    lineFromPoints(Q, R, e, f, g);
  
    // Converting lines PQ and QR
    // to perpendicular bisectors.
    // After this, L = ax + by = c
    // M = ex + fy = g
    perpenBisectorFromLine(P, Q, a, b, c);
    perpenBisectorFromLine(Q, R, e, f, g);
  
    // The point of intersection
    // of L and M gives r as the
    // circumcenter
    r.x = LineInterX(a, b, c, e, f, g);
    r.y = LineInterY(a, b, c, e, f, g);
  
    // Length of radius
    double q = (r.x - P.x) * (r.x - P.x)
               + (r.y - P.y) * (r.y - P.y);
  
    // Distance between radius
    // and the given point D
    double dis = (r.x - D.x) * (r.x - D.x)
                 + (r.y - D.y) * (r.y - D.y);
  
    // Condition for point lies
    // inside circumcircle
    if (dis < q) {
        System.out.print("Point (" +  D.x+ ", "
             + D.y+ ") is inside "
            + "the circumcircle");
    }
  
    // Condition for point lies
    // on circumcircle
    else if (dis == q) {
        System.out.print("Point (" +  D.x+ ", "
             + D.y+ ") lies on the "
            + "circumcircle");
    }
  
    // Condition for point lies
    // outside circumcircle
    else {
        System.out.print("Point (" +  D.x+ ", "
             + D.y+ ") lies outside"
            + " the circumcircle");
    }
}
  
// Driver Code
public static void main(String[] args)
{
    point A, B, C, D;
  
    // Given Points
    A = new point(2, 8 );
    B = new point(2, 1 );
    C = new point(4, 5 );
    D = new point(3, 0 );
  
    // Function call to find
    // the point lies inside,
    // outside or on the
    // circle
    findPosition(A, B, C, D);
}
}
 
// This code is contributed by Rajput-Ji

Python3

# Python3 program to find the points
# which lies inside, outside or
# on the circle
 
# Function to find the line given
# two points
def lineFromPoints(P, Q, a, b, c):
     
    a = Q[1] - P[1]
    b = P[0] - Q[0]
    c = a * (P[0]) + b * (P[1])
 
    return a, b, c
 
# Function which converts the
# input line to its perpendicular
# bisector. It also inputs the
# points whose mid-lies o
# on the bisector
def perpenBisectorFromLine(P, Q, a, b, c):
     
    # Find the mid point
    mid_point = [0, 0]
 
    # x coordinates
    mid_point[0] = (P[0] + Q[0]) / 2
 
    # y coordinates
    mid_point[1] = (P[1] + Q[1]) / 2
 
    # c = -bx + ay
    c = (-b * (mid_point[0]) +
          a * (mid_point[1]))
 
    # Assign the coefficient of
    # a and b
    temp = a
    a = -b
    b = temp
 
    return a, b, c
 
# Returns the intersection of
# two lines
def LineInterX(a1, b1, c1, a2, b2, c2):
     
    # Find determinant
    determ = a1 * b2 - a2 * b1
 
    x = (b2 * c1 - b1 * c2)
    x /= determ
 
    return x
 
# Returns the intersection of
# two lines
def LineInterY(a1, b1, c1, a2, b2, c2):
     
    # Find determinant
    determ = a1 * b2 - a2 * b1
 
    y = (a1 * c2 - a2 * c1)
     
    #print(y)
    y /= determ
 
    return y
 
# Function to find the point
# lies inside, outside or on
# the circle
def findPosition(P, Q, R, D):
     
    # Store the coordinates
    # radius of circumcircle
    r = [0, 0]
 
    # Line PQ is represented
    # as ax + by = c
    a, b, c = lineFromPoints(P, Q, 0, 0, 0)
 
    # Line QR is represented
    # as ex + fy = g
    e, f, g = lineFromPoints(Q, R, 0, 0, 0)
 
    # Converting lines PQ and QR
    # to perpendicular bisectors.
    # After this, L = ax + by = c
    # M = ex + fy = g
    a, b, c = perpenBisectorFromLine(P, Q,
                                     a, b, c)
    e, f, g = perpenBisectorFromLine(Q, R,
                                     e, f, g)
 
    # The of intersection
    # of L and M gives r as the
    # circumcenter
    r[0] = LineInterX(a, b, c, e, f, g)
    r[1] = LineInterY(a, b, c, e, f, g)
 
    # Length of radius
    q = ((r[0] - P[0]) *
         (r[0] - P[0]) +
         (r[1] - P[1]) *
         (r[1] - P[1]))
 
    # Distance between radius
    # and the given D
    dis = ((r[0] - D[0]) *
           (r[0] - D[0]) +
           (r[1] - D[1]) *
           (r[1] - D[1]))
 
    # Condition for lies
    # inside circumcircle
    if (dis < q):
        print("Point (", D[0], ",", D[1],
              ") is inside the circumcircle")
 
    # Condition for lies
    # on circumcircle
    elif (dis == q):
        print("Point (", D[0], ",", D[1],
              ") lies on the circumcircle")
 
    # Condition for lies
    # outside circumcircle
    else:
        print("Point (", D[0], ",", D[1],
              ") lies outside the circumcircle")
 
# Driver Code
if __name__ == '__main__':
     
    # A, B, C, D
 
    # Given Points
    A = [2, 8]
    B = [2, 1]
    C = [4, 5]
    D = [3, 0]
 
    # Function call to find
    # the lies inside,
    # outside or on the
    # circle
    findPosition(A, B, C, D)
 
# This code is contributed by mohit kumar 29

C#

// C# program to find the points
// which lies inside, outside or
// on the circle
using System;
 
class GFG{
   
// Structure Pointer to
// store x and y coordinates
class point {
    public double x, y;
    public point() {
    }
    public point(double x, double y) {
        this.x = x;
        this.y = y;
    }
      
};
   
// Function to find the line given
// two points
static void lineFromPoints(point P, point Q,
                    double a, double b,
                    double c)
{
    a = Q.y - P.y;
    b = P.x - Q.x;
    c = a * (P.x) + b * (P.y);
}
   
// Function which converts the
// input line to its perpendicular
// bisector. It also inputs the
// points whose mid-point lies o
// on the bisector
static void perpenBisectorFromLine(point P, point Q,
                            double a, double b,
                            double c)
{
   
    // Find the mid point
    point mid_point = new point();
   
    // x coordinates
    mid_point.x = (P.x + Q.x) / 2;
   
    // y coordinates
    mid_point.y = (P.y + Q.y) / 2;
   
    // c = -bx + ay
    c = -b * (mid_point.x)
        + a * (mid_point.y);
   
    // Assign the coefficient of
    // a and b
    double temp = a;
    a = -b;
    b = temp;
}
   
// Returns the intersection point of
// two lines
static double LineInterX(double a1, double b1,
                  double c1, double a2,
                  double b2, double c2)
{
   
    // Find determinant
    double determ = a1 * b2 - a2 * b1;
   
    double x = (b2 * c1 - b1 * c2);
    x /= determ;
   
    return x;
}
   
// Returns the intersection point of
// two lines
static double LineInterY(double a1, double b1,
                  double c1, double a2,
                  double b2, double c2)
{
   
    // Find determinant
    double determ = a1 * b2 - a2 * b1;
   
    double y = (a1 * c2 - a2 * c1);
    y /= determ;
   
    return y;
}
   
// Function to find the point
// lies inside, outside or on
// the circle
static void findPosition(point P, point Q,
                  point R, point D)
{
   
    // Store the coordinates
    // radius of circumcircle
    point r = new point();
   
    // Line PQ is represented
    // as ax + by = c
    double a = 0, b = 0, c = 0;
    lineFromPoints(P, Q, a, b, c);
   
    // Line QR is represented
    // as ex + fy = g
    double e = 0, f = 0, g = 0;
    lineFromPoints(Q, R, e, f, g);
   
    // Converting lines PQ and QR
    // to perpendicular bisectors.
    // After this, L = ax + by = c
    // M = ex + fy = g
    perpenBisectorFromLine(P, Q, a, b, c);
    perpenBisectorFromLine(Q, R, e, f, g);
   
    // The point of intersection
    // of L and M gives r as the
    // circumcenter
    r.x = LineInterX(a, b, c, e, f, g);
    r.y = LineInterY(a, b, c, e, f, g);
   
    // Length of radius
    double q = (r.x - P.x) * (r.x - P.x)
               + (r.y - P.y) * (r.y - P.y);
   
    // Distance between radius
    // and the given point D
    double dis = (r.x - D.x) * (r.x - D.x)
                 + (r.y - D.y) * (r.y - D.y);
   
    // Condition for point lies
    // inside circumcircle
    if (dis < q) {
        Console.Write("Point (" +  D.x+ ", "
             + D.y+ ") is inside "
            + "the circumcircle");
    }
   
    // Condition for point lies
    // on circumcircle
    else if (dis == q) {
        Console.Write("Point (" +  D.x+ ", "
             + D.y+ ") lies on the "
            + "circumcircle");
    }
   
    // Condition for point lies
    // outside circumcircle
    else {
        Console.Write("Point (" +  D.x+ ", "
             + D.y+ ") lies outside"
            + " the circumcircle");
    }
}
   
// Driver Code
public static void Main(String[] args)
{
    point A, B, C, D;
   
    // Given Points
    A = new point(2, 8 );
    B = new point(2, 1 );
    C = new point(4, 5 );
    D = new point(3, 0 );
   
    // Function call to find
    // the point lies inside,
    // outside or on the
    // circle
    findPosition(A, B, C, D);
}
}
 
// This code is contributed by Rajput-Ji

Javascript

<script>
// Javascript program to find the points
// which lies inside, outside or
// on the circle
   
// Structure Pointer to
// store x and y coordinates
class point
{
    constructor(x,y)
    {
        this.x = x;
        this.y = y;
    }
}
 
// Function to find the line given
// two points
function lineFromPoints(P, Q, a, b, c)
{
    a = Q.y - P.y;
    b = P.x - Q.x;
    c = a * (P.x) + b * (P.y);
}
 
// Function which converts the
// input line to its perpendicular
// bisector. It also inputs the
// points whose mid-point lies o
// on the bisector
function perpenBisectorFromLine(P, Q, a, b, c)
{
 
    // Find the mid point
    let mid_point = new point();
   
    // x coordinates
    mid_point.x = (P.x + Q.x) / 2;
   
    // y coordinates
    mid_point.y = (P.y + Q.y) / 2;
   
    // c = -bx + ay
    c = -b * (mid_point.x)
        + a * (mid_point.y);
   
    // Assign the coefficient of
    // a and b
    let temp = a;
    a = -b;
    b = temp;
}
 
// Returns the intersection point of
// two lines
function LineInterX(a1, b1, c1, a2, b2, c2)
{
 
    // Find determinant
    let determ = a1 * b2 - a2 * b1;
   
    let x = (b2 * c1 - b1 * c2);
    x /= determ;
   
    return x;
}
 
// Returns the intersection point of
// two lines
function LineInterY(a1, b1, c1, a2, b2, c2)
{
    // Find determinant
    let determ = a1 * b2 - a2 * b1;
   
    let y = (a1 * c2 - a2 * c1);
    y /= determ;
   
    return y;
}
 
// Function to find the point
// lies inside, outside or on
// the circle
function findPosition(P, Q, R, D)
{
 
    // Store the coordinates
    // radius of circumcircle
    let r = new point();
   
    // Line PQ is represented
    // as ax + by = c
    let a = 0, b = 0, c = 0;
    lineFromPoints(P, Q, a, b, c);
   
    // Line QR is represented
    // as ex + fy = g
    let e = 0, f = 0, g = 0;
    lineFromPoints(Q, R, e, f, g);
   
    // Converting lines PQ and QR
    // to perpendicular bisectors.
    // After this, L = ax + by = c
    // M = ex + fy = g
    perpenBisectorFromLine(P, Q, a, b, c);
    perpenBisectorFromLine(Q, R, e, f, g);
   
    // The point of intersection
    // of L and M gives r as the
    // circumcenter
    r.x = LineInterX(a, b, c, e, f, g);
    r.y = LineInterY(a, b, c, e, f, g);
   
    // Length of radius
    let q = (r.x - P.x) * (r.x - P.x)
               + (r.y - P.y) * (r.y - P.y);
   
    // Distance between radius
    // and the given point D
    let dis = (r.x - D.x) * (r.x - D.x)
                 + (r.y - D.y) * (r.y - D.y);
   
    // Condition for point lies
    // inside circumcircle
    if (dis < q) {
        document.write("Point (" +  D.x+ ", "
             + D.y+ ") is inside "
            + "the circumcircle");
    }
   
    // Condition for point lies
    // on circumcircle
    else if (dis == q) {
        document.write("Point (" +  D.x+ ", "
             + D.y+ ") lies on the "
            + "circumcircle");
    }
   
    // Condition for point lies
    // outside circumcircle
    else {
        document.write("Point (" +  D.x+ ", "
             + D.y+ ") lies outside"
            + " the circumcircle");
    }
}
 
// Driver Code
let A, B, C, D;
 
// Given Points
A = new point(2, 8 );
B = new point(2, 1 );
C = new point(4, 5 );
D = new point(3, 0 );
 
// Function call to find
// the point lies inside,
// outside or on the
// circle
findPosition(A, B, C, D);
 
// This code is contributed by unknown2108
</script>
Producción: 

Point (3, 0) lies outside the circumcircle

 

Tiempo Complejidad: O(1)
Espacio Auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por crisscross y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *