Dada una serie de strings, encuentre si las strings dadas se pueden enstringr para formar un círculo. Una string X se puede poner antes de otra string Y en un círculo si el último carácter de X es el mismo que el primer carácter de Y.
Ejemplos:
Input: arr[] = {"geek", "king"} Output: Yes, the given strings can be chained. Note that the last character of first string is same as first character of second string and vice versa is also true. Input: arr[] = {"for", "geek", "rig", "kaf"} Output: Yes, the given strings can be chained. The strings can be chained as "for", "rig", "geek" and "kaf" Input: arr[] = {"aab", "bac", "aaa", "cda"} Output: Yes, the given strings can be chained. The strings can be chained as "aaa", "aab", "bac" and "cda" Input: arr[] = {"aaa", "bbb", "baa", "aab"}; Output: Yes, the given strings can be chained. The strings can be chained as "aaa", "aab", "bbb" and "baa" Input: arr[] = {"aaa"}; Output: Yes Input: arr[] = {"aaa", "bbb"}; Output: No Input : arr[] = ["abc", "efg", "cde", "ghi", "ija"] Output : Yes These strings can be reordered as, “abc”, “cde”, “efg”, “ghi”, “ija” Input : arr[] = [“ijk”, “kji”, “abc”, “cba”] Output : No
Le recomendamos encarecidamente que haga clic aquí y lo practique antes de pasar a la solución.
Hemos discutido un enfoque para este problema en la publicación a continuación.
Encuentra si una array de strings se puede enstringr para formar un círculo | Serie 1
En este post, se discute otro enfoque. Resolvemos este problema tratándolo como un problema gráfico, donde los vértices serán el primer y último carácter de las strings, y dibujaremos una arista entre dos vértices si son el primer y último carácter de la misma string, por lo que un número de los bordes en el gráfico serán los mismos que el número de strings en la array.
La representación gráfica de algunas arrays de strings se da en el siguiente diagrama,
Ahora se puede ver claramente después de la representación del gráfico que si es posible un bucle entre los vértices del gráfico, entonces podemos reordenar las strings, de lo contrario no. Como en el ejemplo del diagrama anterior, se puede encontrar un bucle en la primera y tercera array de strings, pero no en la segunda array de strings. Ahora, para verificar si este gráfico puede tener un bucle que pase por todos los vértices , verificaremos dos condiciones,
- Los grados de entrada y salida de cada vértice deben ser iguales.
- El gráfico debe estar fuertemente conectado.
La primera condición se puede verificar fácilmente manteniendo dos arrays, dentro y fuera para cada carácter. Verificar si un gráfico tiene un bucle que pasa por todos los vértices es lo mismo que verificar si el gráfico dirigido completo está fuertemente conectado o no, porque si tiene un bucle que pasa por todos los vértices, entonces podemos llegar a cualquier vértice desde cualquier otro vértice que es decir, el gráfico estará fuertemente conectado y el mismo argumento también se puede dar para la declaración inversa.
Ahora, para verificar la segunda condición, solo ejecutaremos un DFS desde cualquier carácter y visitaremos todos los vértices accesibles desde esto, ahora si el gráfico tiene un bucle, luego de este DFS se deben visitar todos los vértices, si se visitan todos los vértices, entonces regresaremos verdadero, de lo contrario, falso, por lo que visitar todos los vértices en un solo DFS marca un posible orden entre las strings .
C++
// C++ code to check if cyclic order is possible among strings // under given constraints #include <bits/stdc++.h> using namespace std; #define M 26 // Utility method for a depth first search among vertices void dfs(vector<int> g[], int u, vector<bool> &visit) { visit[u] = true; for (int i = 0; i < g[u].size(); ++i) if(!visit[g[u][i]]) dfs(g, g[u][i], visit); } // Returns true if all vertices are strongly connected // i.e. can be made as loop bool isConnected(vector<int> g[], vector<bool> &mark, int s) { // Initialize all vertices as not visited vector<bool> visit(M, false); // perform a dfs from s dfs(g, s, visit); // now loop through all characters for (int i = 0; i < M; i++) { /* I character is marked (i.e. it was first or last character of some string) then it should be visited in last dfs (as for looping, graph should be strongly connected) */ if (mark[i] && !visit[i]) return false; } // If we reach that means graph is connected return true; } // return true if an order among strings is possible bool possibleOrderAmongString(string arr[], int N) { // Create an empty graph vector<int> g[M]; // Initialize all vertices as not marked vector<bool> mark(M, false); // Initialize indegree and outdegree of every // vertex as 0. vector<int> in(M, 0), out(M, 0); // Process all strings one by one for (int i = 0; i < N; i++) { // Find first and last characters int f = arr[i].front() - 'a'; int l = arr[i].back() - 'a'; // Mark the characters mark[f] = mark[l] = true; // increase indegree and outdegree count in[l]++; out[f]++; // Add an edge in graph g[f].push_back(l); } // If for any character indegree is not equal to // outdegree then ordering is not possible for (int i = 0; i < M; i++) if (in[i] != out[i]) return false; return isConnected(g, mark, arr[0].front() - 'a'); } // Driver code to test above methods int main() { // string arr[] = {"abc", "efg", "cde", "ghi", "ija"}; string arr[] = {"ab", "bc", "cd", "de", "ed", "da"}; int N = sizeof(arr) / sizeof(arr[0]); if (possibleOrderAmongString(arr, N) == false) cout << "Ordering not possible\n"; else cout << "Ordering is possible\n"; return 0; }
Java
// Java code to check if cyclic order is // possible among strings under given constraints import java.io.*; import java.util.*; class GFG{ // Return true if an order among strings is possible public static boolean possibleOrderAmongString( String s[], int n) { int m = 26; boolean mark[] = new boolean[m]; int in[] = new int[26]; int out[] = new int[26]; ArrayList< ArrayList<Integer>> adj = new ArrayList< ArrayList<Integer>>(); for(int i = 0; i < m; i++) adj.add(new ArrayList<>()); // Process all strings one by one for(int i = 0; i < n; i++) { // Find first and last characters int f = (int)(s[i].charAt(0) - 'a'); int l = (int)(s[i].charAt( s[i].length() - 1) - 'a'); // Mark the characters mark[f] = mark[l] = true; // Increase indegree and outdegree count in[l]++; out[f]++; // Add an edge in graph adj.get(f).add(l); } // If for any character indegree is not equal to // outdegree then ordering is not possible for(int i = 0; i < m; i++) { if (in[i] != out[i]) return false; } return isConnected(adj, mark, s[0].charAt(0) - 'a'); } // Returns true if all vertices are strongly // connected i.e. can be made as loop public static boolean isConnected( ArrayList<ArrayList<Integer>> adj, boolean mark[], int src) { boolean visited[] = new boolean[26]; // Perform a dfs from src dfs(adj, visited, src); for(int i = 0; i < 26; i++) { /* I character is marked (i.e. it was first or last character of some string) then it should be visited in last dfs (as for looping, graph should be strongly connected) */ if (mark[i] && !visited[i]) return false; } // If we reach that means graph is connected return true; } // Utility method for a depth first // search among vertices public static void dfs(ArrayList<ArrayList<Integer>> adj, boolean visited[], int src) { visited[src] = true; for(int i = 0; i < adj.get(src).size(); i++) if (!visited[adj.get(src).get(i)]) dfs(adj, visited, adj.get(src).get(i)); } // Driver code public static void main(String[] args) { String s[] = { "ab", "bc", "cd", "de", "ed", "da" }; int n = s.length; if (possibleOrderAmongString(s, n)) System.out.println("Ordering is possible"); else System.out.println("Ordering is not possible"); } } // This code is contributed by parascoding
Python3
# Python3 code to check if # cyclic order is possible # among strings under given # constraints M = 26 # Utility method for a depth # first search among vertices def dfs(g, u, visit): visit[u] = True for i in range(len(g[u])): if(not visit[g[u][i]]): dfs(g, g[u][i], visit) # Returns true if all vertices # are strongly connected i.e. # can be made as loop def isConnected(g, mark, s): # Initialize all vertices # as not visited visit = [False for i in range(M)] # Perform a dfs from s dfs(g, s, visit) # Now loop through # all characters for i in range(M): # I character is marked # (i.e. it was first or last # character of some string) # then it should be visited # in last dfs (as for looping, # graph should be strongly # connected) */ if(mark[i] and (not visit[i])): return False # If we reach that means # graph is connected return True # return true if an order among # strings is possible def possibleOrderAmongString(arr, N): # Create an empty graph g = {} # Initialize all vertices # as not marked mark = [False for i in range(M)] # Initialize indegree and # outdegree of every # vertex as 0. In = [0 for i in range(M)] out = [0 for i in range(M)] # Process all strings # one by one for i in range(N): # Find first and last # characters f = (ord(arr[i][0]) - ord('a')) l = (ord(arr[i][-1]) - ord('a')) # Mark the characters mark[f] = True mark[l] = True # Increase indegree # and outdegree count In[l] += 1 out[f] += 1 if f not in g: g[f] = [] # Add an edge in graph g[f].append(l) # If for any character # indegree is not equal to # outdegree then ordering # is not possible for i in range(M): if(In[i] != out[i]): return False return isConnected(g, mark, ord(arr[0][0]) - ord('a')) # Driver code arr = ["ab", "bc", "cd", "de", "ed", "da"] N = len(arr) if(possibleOrderAmongString(arr, N) == False): print("Ordering not possible") else: print("Ordering is possible") # This code is contributed by avanitrachhadiya2155
C#
// C# code to check if cyclic order is // possible among strings under given constraints using System; using System.Collections.Generic; class GFG { // Return true if an order among strings is possible static bool possibleOrderAmongString(string[] s, int n) { int m = 26; bool[] mark = new bool[m]; int[] In = new int[26]; int[] Out = new int[26]; List<List<int>> adj = new List<List<int>>(); for(int i = 0; i < m; i++) adj.Add(new List<int>()); // Process all strings one by one for(int i = 0; i < n; i++) { // Find first and last characters int f = (int)(s[i][0] - 'a'); int l = (int)(s[i][s[i].Length - 1] - 'a'); // Mark the characters mark[f] = mark[l] = true; // Increase indegree and outdegree count In[l]++; Out[f]++; // Add an edge in graph adj[f].Add(l); } // If for any character indegree is not equal to // outdegree then ordering is not possible for(int i = 0; i < m; i++) { if (In[i] != Out[i]) return false; } return isConnected(adj, mark, s[0][0] - 'a'); } // Returns true if all vertices are strongly // connected i.e. can be made as loop public static bool isConnected( List<List<int>> adj, bool[] mark, int src) { bool[] visited = new bool[26]; // Perform a dfs from src dfs(adj, visited, src); for(int i = 0; i < 26; i++) { /* I character is marked (i.e. it was first or last character of some string) then it should be visited in last dfs (as for looping, graph should be strongly connected) */ if (mark[i] && !visited[i]) return false; } // If we reach that means graph is connected return true; } // Utility method for a depth first // search among vertices public static void dfs(List<List<int>> adj, bool[] visited, int src) { visited[src] = true; for(int i = 0; i < adj[src].Count; i++) if (!visited[adj[src][i]]) dfs(adj, visited, adj[src][i]); } static void Main() { string[] s = { "ab", "bc", "cd", "de", "ed", "da" }; int n = s.Length; if (possibleOrderAmongString(s, n)) Console.Write("Ordering is possible"); else Console.Write("Ordering is not possible"); } } // This code is contributed by divyesh072019.
Javascript
<script> // Javascript code to check if cyclic order is // possible among strings under given constraints // Return true if an order among strings is possible function possibleOrderAmongString(s, n) { let m = 26; let mark = new Array(m); mark.fill(false); let In = new Array(26); In.fill(0); let Out = new Array(26); Out.fill(0); let adj = []; for(let i = 0; i < m; i++) adj.push([]); // Process all strings one by one for(let i = 0; i < n; i++) { // Find first and last characters let f = (s[i][0].charCodeAt() - 'a'.charCodeAt()); let l = (s[i][s[i].length - 1].charCodeAt() - 'a'.charCodeAt()); // Mark the characters mark[f] = mark[l] = true; // Increase indegree and outdegree count In[l]++; Out[f]++; // Add an edge in graph adj[f].push(l); } // If for any character indegree is not equal to // outdegree then ordering is not possible for(let i = 0; i < m; i++) { if (In[i] != Out[i]) return false; } return isConnected(adj, mark, s[0][0].charCodeAt() - 'a'.charCodeAt()); } // Returns true if all vertices are strongly // connected i.e. can be made as loop function isConnected(adj, mark, src) { let visited = new Array(26); visited.fill(false); // Perform a dfs from src dfs(adj, visited, src); for(let i = 0; i < 26; i++) { /* I character is marked (i.e. it was first or last character of some string) then it should be visited in last dfs (as for looping, graph should be strongly connected) */ if (mark[i] && !visited[i]) return false; } // If we reach that means graph is connected return true; } // Utility method for a depth first // search among vertices function dfs(adj, visited, src) { visited[src] = true; for(let i = 0; i < adj[src].length; i++) if (!visited[adj[src][i]]) dfs(adj, visited, adj[src][i]); } let s = [ "ab", "bc", "cd", "de", "ed", "da" ]; let n = s.length; if (possibleOrderAmongString(s, n)) document.write("Ordering is possible"); else document.write("Ordering is not possible"); // This code is contributed by decode2207. </script>
Ordering is possible
Complejidad temporal: O(n)
Espacio auxiliar: O(n)
Este artículo es una contribución de Utkarsh Trivedi . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA