Dado un árbol binario , la tarea es verificar si el árbol binario dado es un árbol binario perfecto o no.
Un árbol binario es un árbol binario perfecto en el que todos los Nodes internos tienen dos hijos y todas las hojas están al mismo nivel.
Ejemplos:
Input : 1 / \ 2 3 / \ / \ 4 5 6 7 Output : Yes Input : 20 / \ 8 22 / \ / \ 5 3 4 25 / \ / \ \ 1 10 2 14 6 Output : No One leaf node with value 4 is not present at the last level and node with value 25 has only one child.
Ya hemos discutido el enfoque recursivo . En esta publicación, se analiza el enfoque iterativo.
Enfoque: la idea es utilizar una cola y un indicador de variable , inicializados en cero, para comprobar si se ha descubierto un Node hoja. Comprobaremos:
- Si el Node actual tiene dos hijos, comprobaremos el valor de flag . Si el valor de la bandera es cero, empuje el hijo izquierdo y derecho en la cola, pero si el valor de la bandera es uno, devuelva falso porque eso significa que ya se ha encontrado un Node de hoja y en un árbol binario perfecto todos los Nodes de hoja debe estar presente en el último nivel, ningún Node hoja debe estar presente en ningún otro nivel.
- Si el Node actual no tiene un hijo, eso significa que es un Node de hoja, luego marque la bandera como uno.
- Si el Node actual tiene solo un hijo, devuelve falso, como en un árbol binario perfecto, todos los Nodes tienen dos hijos excepto los Nodes hoja, que deben estar presentes en el último nivel del árbol.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to check if the // given binary tree is perfect #include <bits/stdc++.h> using namespace std; // A binary tree node struct Node { int data; Node *left, *right; }; // Utility function to allocate memory for a new node Node* newNode(int data) { Node* node = new (Node); node->data = data; node->left = node->right = NULL; return (node); } // Function to check if the given tree is perfect bool CheckPerfectTree(Node* root) { queue<Node*> q; // Push the root node q.push(root); // Flag to check if leaf nodes have been found int flag = 0; while (!q.empty()) { Node* temp = q.front(); q.pop(); // If current node has both left and right child if (temp->left && temp->right) { // If a leaf node has already been found // then return false if (flag == 1) return false; // If a leaf node has not been discovered yet // push the left and right child in the queue else { q.push(temp->left); q.push(temp->right); } } // If a leaf node is found mark flag as one else if (!temp->left && !temp->right) { flag = 1; } // If the current node has only one child // then return false else if (!temp->left || !temp->right) return false; } // If the given tree is perfect return true return true; } // Driver code int main() { Node* root = newNode(7); root->left = newNode(5); root->right = newNode(6); root->left->left = newNode(8); root->left->right = newNode(1); root->right->left = newNode(3); root->right->right = newNode(9); root->right->right->right = newNode(13); root->right->right->left = newNode(10); if (CheckPerfectTree(root)) printf("Yes"); else printf("No"); return 0; }
Java
// Java program to check if the // given binary tree is perfect import java.util.*; class GFG { // A binary tree node static class Node { int data; Node left, right; }; // Utility function to allocate memory for a new node static Node newNode(int data) { Node node = new Node(); node.data = data; node.left = node.right = null; return (node); } // Function to check if the given tree is perfect static boolean CheckPerfectTree(Node root) { Queue<Node> q = new LinkedList<Node>(); // add the root node q.add(root); // Flag to check if leaf nodes have been found int flag = 0; while (q.size() > 0) { Node temp = q.peek(); q.remove(); // If current node has both left and right child if (temp.left != null && temp.right != null) { // If a leaf node has already been found // then return false if (flag == 1) return false; // If a leaf node has not been discovered yet // add the left and right child in the queue else { q.add(temp.left); q.add(temp.right); } } // If a leaf node is found mark flag as one else if (temp.left == null && temp.right == null) { flag = 1; } // If the current node has only one child // then return false else if (temp.left == null || temp.right == null) return false; } // If the given tree is perfect return true return true; } // Driver code public static void main(String args[]) { Node root = newNode(7); root.left = newNode(5); root.right = newNode(6); root.left.left = newNode(8); root.left.right = newNode(1); root.right.left = newNode(3); root.right.right = newNode(9); root.right.right.right = newNode(13); root.right.right.left = newNode(10); if (CheckPerfectTree(root)) System.out.printf("Yes"); else System.out.printf("No"); } } // This code is contributed by Arnab Kundu
Python3
# Python3 program to check if the # given binary tree is perfect import sys import math # A binary tree node class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Utility function to allocate # memory for a new node def newNode(data): return Node(data) # Function to check if the # given tree is perfect def CheckPerfectTree(root): q = [] # Push the root node q.append(root) # Flag to check if leaf nodes # have been found flag = 0 while(q): temp = q[0] q.pop(0) # If current node has both # left and right child if (temp.left and temp.right): # If a leaf node has already been found # then return false if (flag == 1): return False # If a leaf node has not been discovered yet # push the left and right child in the queue else: q.append(temp.left) q.append(temp.right) # If a leaf node is found # mark flag as one elif(not temp.left and not temp.right): flag = 1 # If the current node has only one child # then return false elif(not temp.left or not temp.right): return False # If the given tree is perfect # return true return True # Driver Code if __name__=='__main__': root = newNode(7) root.left = newNode(5) root.left.left = newNode(8) root.left.right = newNode(1) root.right = newNode(6) root.right.left = newNode(3) root.right.right = newNode(9) root.right.right.left = newNode(10) root.right.right.right = newNode(13) if CheckPerfectTree(root): print("Yes") else: print("No") # This code is contributed # by Vikash Kumar 37
C#
// C# program to check if the // given binary tree is perfect using System; using System.Collections.Generic; class GFG { // A binary tree node public class Node { public int data; public Node left, right; }; // Utility function to allocate // memory for a new node static Node newNode(int data) { Node node = new Node(); node.data = data; node.left = node.right = null; return (node); } // Function to check if the given tree is perfect static Boolean CheckPerfectTree(Node root) { Queue<Node > q = new Queue<Node>(); // add the root node q.Enqueue(root); // Flag to check if leaf nodes // have been found int flag = 0; while (q.Count > 0) { Node temp = q.Peek(); q.Dequeue(); // If current node has both // left and right child if (temp.left != null && temp.right != null) { // If a leaf node has already been found // then return false if (flag == 1) return false; // If a leaf node has not been discovered yet // add the left and right child in the queue else { q.Enqueue(temp.left); q.Enqueue(temp.right); } } // If a leaf node is found mark flag as one else if (temp.left == null && temp.right == null) { flag = 1; } // If the current node has only one child // then return false else if (temp.left == null || temp.right == null) return false; } // If the given tree is perfect return true return true; } // Driver code public static void Main(String []args) { Node root = newNode(7); root.left = newNode(5); root.right = newNode(6); root.left.left = newNode(8); root.left.right = newNode(1); root.right.left = newNode(3); root.right.right = newNode(9); root.right.right.right = newNode(13); root.right.right.left = newNode(10); if (CheckPerfectTree(root)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript program to check if the // given binary tree is perfect // A binary tree node class Node { constructor(data) { this.data = data; this.left = this.right = null; } } // Function to check if the given tree is perfect function CheckPerfectTree(root) { let q = []; // add the root node q.push(root); // Flag to check if leaf nodes have been found let flag = 0; while (q.length > 0) { let temp = q[0]; q.shift(); // If current node has both left and right child if (temp.left != null && temp.right != null) { // If a leaf node has already been found // then return false if (flag == 1) return false; // If a leaf node has not been discovered yet // add the left and right child in the queue else { q.push(temp.left); q.push(temp.right); } } // If a leaf node is found mark flag as one else if (temp.left == null && temp.right == null) { flag = 1; } // If the current node has only one child // then return false else if (temp.left == null || temp.right == null) return false; } // If the given tree is perfect return true return true; } // Driver code let root = new Node(7); root.left = new Node(5); root.right = new Node(6); root.left.left = new Node(8); root.left.right = new Node(1); root.right.left = new Node(3); root.right.right = new Node(9); root.right.right.right = new Node(13); root.right.right.left = new Node(10); if (CheckPerfectTree(root)) document.write("Yes"); else document.write("No"); // This code is contributed by avanitrachhadiya2155 </script>
No
Complejidad temporal : O(N), donde N es el número total de Nodes en el árbol binario.
Espacio Auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por Sakshi_Srivastava y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA