Dada una array de números enteros, la tarea es encontrar si es posible construir un número entero usando todos los dígitos de estos números de modo que sea divisible por 3. Si es posible, escriba «Sí» y, si no, escriba «No». .
Ejemplos:
Input : arr[] = {40, 50, 90} Output : Yes We can construct a number which is divisible by 3, for example 945000. So the answer is Yes. Input : arr[] = {1, 4} Output : No The only possible numbers are 14 and 41, but both of them are not divisible by 3, so the answer is No.
La idea se basa en que un número es divisible por 3 si la suma de sus dígitos es divisible por 3 . Así que simplemente encontramos la suma de los elementos del arreglo. Si la suma es divisible por 3, nuestra respuesta es Sí, de lo contrario No
Implementación:
CPP
// C++ program to find if it is possible // to make a number divisible by 3 using // all digits of given array #include <bits/stdc++.h> using namespace std; bool isPossibleToMakeDivisible(int arr[], int n) { // Find remainder of sum when divided by 3 int remainder = 0; for (int i=0; i<n; i++) remainder = (remainder + arr[i]) % 3; // Return true if remainder is 0. return (remainder == 0); } // Driver code int main() { int arr[] = { 40, 50, 90 }; int n = sizeof(arr) / sizeof(arr[0]); if (isPossibleToMakeDivisible(arr, n)) printf("Yes\n"); else printf("No\n"); return 0; }
Java
// Java program to find if it is possible // to make a number divisible by 3 using // all digits of given array import java.io.*; import java.util.*; class GFG { public static boolean isPossibleToMakeDivisible(int arr[], int n) { // Find remainder of sum when divided by 3 int remainder = 0; for (int i=0; i<n; i++) remainder = (remainder + arr[i]) % 3; // Return true if remainder is 0. return (remainder == 0); } public static void main (String[] args) { int arr[] = { 40, 50, 90 }; int n = 3; if (isPossibleToMakeDivisible(arr, n)) System.out.print("Yes\n"); else System.out.print("No\n"); } } // Code Contributed by Mohit Gupta_OMG <(0_o)>
Python3
# Python program to find if it is possible # to make a number divisible by 3 using # all digits of given array def isPossibleToMakeDivisible(arr, n): # Find remainder of sum when divided by 3 remainder = 0 for i in range (0, n): remainder = (remainder + arr[i]) % 3 # Return true if remainder is 0. return (remainder == 0) # main() arr = [40, 50, 90 ]; n = 3 if (isPossibleToMakeDivisible(arr, n)): print("Yes") else: print("No") # Code Contributed by Mohit Gupta_OMG <(0_o)>
C#
// C# program to find if it is possible // to make a number divisible by 3 using // all digits of given array using System; class GFG { public static bool isPossibleToMakeDivisible(int []arr, int n) { // Find remainder of sum when divided by 3 int remainder = 0; for (int i = 0; i < n; i++) remainder = (remainder + arr[i]) % 3; // Return true if remainder is 0. return (remainder == 0); } public static void Main () { int []arr = { 40, 50, 90 }; int n = 3; if (isPossibleToMakeDivisible(arr, n)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } } // This code is contributed by vt_m
PHP
<?php // PHP program to find if it is possible // to make a number divisible by 3 using // all digits of given array function isPossibleToMakeDivisible($arr, $n) { // Find remainder of sum // when divided by 3 $remainder = 0; for ($i = 0; $i < $n; $i++) $remainder = ($remainder + $arr[$i]) % 3; // Return true if remainder is 0. return ($remainder == 0); } // Driver code $arr = array( 40, 50, 90 ); $n = sizeof($arr); if (isPossibleToMakeDivisible($arr, $n)) echo("Yes\n"); else echo("No\n"); // This code is contributed by Ajit. ?>
Javascript
<script> // javascript program to find if it is possible // to make a number divisible by 3 using // all digits of given array function isPossibleToMakeDivisible(arr , n) { // Find remainder of sum when divided by 3 var remainder = 0; for (i=0; i<n; i++) remainder = (remainder + arr[i]) % 3; // Return true if remainder is 0. return (remainder == 0); } var arr = [ 40, 50, 90 ]; var n = 3; if (isPossibleToMakeDivisible(arr, n)) document.write("Yes\n"); else document.write("No\n"); // This code contributed by Princi Singh </script>
Producción
Yes
Complejidad de tiempo: O(n)
Complejidad de espacio: O(1)
Publicación traducida automáticamente
Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA