Dada una array no ordenada. La tarea es calcular la frecuencia acumulada de cada elemento de la array utilizando una array de conteo.
Ejemplos:
Input : arr[] = [1, 2, 2, 1, 3, 4] Output :1->2 2->4 3->5 4->6 Input : arr[] = [1, 1, 1, 2, 2, 2] Output :1->3 2->6
Una solución simple es usar dos bucles anidados. El bucle exterior elige un elemento de izquierda a derecha que no se visita. El bucle interno cuenta sus ocurrencias y marca las ocurrencias como visitadas. La complejidad temporal de esta solución es O(n*n) y el espacio auxiliar requerido es O(n).
Una mejor solución es utilizar la clasificación. Ordenamos la array para que los mismos elementos se unan. Después de ordenar, recorremos linealmente los elementos y contamos sus frecuencias.
Una solución eficiente es usar hashing. Inserte el elemento y su frecuencia en un conjunto de pares. Como el conjunto almacena valores únicos en un orden ordenado, almacenará todos los elementos con sus frecuencias en un orden ordenado. Iterar en el conjunto e imprimir las frecuencias sumando las anteriores en cada paso.
A continuación se muestra la implementación del enfoque anterior:
C++
#include <bits/stdc++.h> using namespace std; // Function to print the cumulative frequency according to // the order given void countFreq(int a[], int n) { // Declaring a map so values get inserted in a sorted // manner map<int, int> m; // Inserting values into the map for (int i = 0; i < n; i++) { m[a[i]]++; } // Variable to store the count of previous number // cumulative frequency int cumul = 0; for (auto v : m) { cout << v.first << " " << v.second + cumul << endl; cumul += v.second; } } int main() { int arr[] = { 1, 3, 2, 4, 2, 1 }; int n = sizeof(arr) / sizeof(arr[0]); countFreq(arr, n); return 0; } // This code is contributed by Vinayak Pareek (Kargil)
Java
// Java program to count cumulative // frequencies of elements in an unsorted array. import java.util.*; class GFG { static void countFreq(int[] a, int n) { // Insert elements and their // frequencies in hash map. HashMap<Integer, Integer> hm = new HashMap<>(); for (int i = 0; i < n; i++) hm.put(a[i], hm.get(a[i]) == null ? 1 : hm.get(a[i]) + 1); // Declare a Map SortedMap<Integer, Integer> st = new TreeMap<>(); // insert the element and // and insert its frequency in a set for (HashMap.Entry<Integer, Integer> x : hm.entrySet()) { st.put(x.getKey(), x.getValue()); } int cumul = 0; // iterate the set and print the // cumulative frequency for (SortedMap.Entry<Integer, Integer> x : st.entrySet()) { cumul += x.getValue(); System.out.println(x.getKey() + " " + cumul); } } // Driver Code public static void main(String[] args) { int[] a = { 1, 3, 2, 4, 2, 1 }; int n = a.length; countFreq(a, n); } } // This code is contributed by // sanjeev2552
Python3
# Python3 program to count cumulative # frequencies of elements in an unsorted array. def countFreq(a, n): # Insert elements and their # frequencies in hash map. hm = {} for i in range(0, n): hm[a[i]] = hm.get(a[i], 0) + 1 # Declare a set st = set() # Insert the element and # its frequency in a set for x in hm: st.add((x, hm[x])) cumul = 0 # Iterate the set and print # the cumulative frequency for x in sorted(st): cumul += x[1] print(x[0], cumul) # Driver Code if __name__ == "__main__": a = [1, 3, 2, 4, 2, 1] n = len(a) countFreq(a, n) # This code is contributed by Rituraj Jain
C#
// C# program to count cumulative // frequencies of elements in an // unsorted array. using System; using System.Collections.Generic; using System.Linq; class GFG{ static void countFreq(int[] a, int n) { // Insert elements and their // frequencies in hash map. Dictionary<int, int> hm = new Dictionary<int, int>(); for(int i = 0; i < n; i++) { if (hm.ContainsKey(a[i])) { hm[a[i]]++; } else { hm[a[i]] = 1; } } int cumul = 0; // Iterate the set and print the // cumulative frequency foreach(KeyValuePair<int, int> x in hm.OrderBy(key => key.Key)) { cumul += x.Value; Console.Write(x.Key + " " + cumul + "\n"); } } // Driver Code public static void Main(string[] args) { int[] a = { 1, 3, 2, 4, 2, 1 }; int n = a.Length; countFreq(a, n); } } // This code is contributed by rutvik_56
Javascript
<script> // Javascript program to count cumulative // frequencies of elements in an unsorted array. function countFreq(a,n) { // Insert elements and their // frequencies in hash map. let hm = new Map(); for (let i = 0; i < n; i++) hm.set(a[i], hm.get(a[i]) == null ? 1 : hm.get(a[i]) + 1); // Declare a Map let st = new Set(); // insert the element and // and insert its frequency in a set for (let [key, value] of hm.entries()) { st.add([key, value]); } st=[...st.entries()].sort() let cumul = 0; // iterate the set and print the // cumulative frequency for (let [key, value] of st.entries()) { cumul += value[1][1]; document.write(value[1][0] + " " + cumul+"<br>"); } } // Driver Code let a=[1, 3, 2, 4, 2, 1]; let n = a.length; countFreq(a, n); // This code is contributed by unknown2108 </script>
1 2 2 4 3 5 4 6
La complejidad temporal de la solución es O(n log n) .
¿Qué pasa si necesitamos frecuencias de elementos según el orden de la primera aparición?
Por ejemplo, una array [2, 4, 1, 2, 1, 3, 4], primero se debe imprimir la frecuencia de 2, luego de 4, luego 1 y finalmente 3.
Enfoque: hash el recuento de ocurrencias de un elemento. Recorra la array e imprima la frecuencia acumulada. Una vez que se imprimió el elemento y su frecuencia acumulada, haga un hash de la ocurrencia de ese elemento como 0 para que no se vuelva a imprimir si aparece en la última mitad de la array durante el recorrido.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to print the cumulative frequency // according to the order given #include <bits/stdc++.h> using namespace std; // Function to print the cumulative frequency // according to the order given void countFreq(int a[], int n) { // Insert elements and their // frequencies in hash map. unordered_map<int, int> hm; for (int i=0; i<n; i++) hm[a[i]]++; int cumul = 0; // traverse in the array for(int i=0;i<n;i++) { // add the frequencies cumul += hm[a[i]]; // if the element has not been // visited previously if(hm[a[i]]) { cout << a[i] << "->" << cumul << endl; } // mark the hash 0 // as the element's cumulative frequency // has been printed hm[a[i]]=0; } } // Driver Code int main() { int a[] = {1, 3, 2, 4, 2, 1}; int n = sizeof(a)/sizeof(a[0]); countFreq(a, n); return 0; }
Java
// Java program to print the cumulative frequency // according to the order given class GFG { // Function to print the cumulative frequency // according to the order given static void countFreq(int a[], int n) { // Insert elements and their // frequencies in hash map. int hm[] = new int[n]; for (int i = 0; i < n; i++) hm[a[i]]++; int cumul = 0; // traverse in the array for(int i = 0; i < n; i++) { // add the frequencies cumul += hm[a[i]]; // if the element has not been // visited previously if(hm[a[i]] != 0) { System.out.println(a[i] + "->" + cumul); } // mark the hash 0 // as the element's cumulative frequency // has been printed hm[a[i]] = 0; } } // Driver Code public static void main(String[] args) { int a[] = {1, 3, 2, 4, 2, 1}; int n = a.length; countFreq(a, n); } } // This code has been contributed by 29AjayKumar
Python3
# Python3 program to print the cumulative # frequency according to the order given # Function to print the cumulative frequency # according to the order given def countFreq(a, n): # Insert elements and their # frequencies in hash map. hm = dict() for i in range(n): hm[a[i]] = hm.get(a[i], 0) + 1 cumul = 0 # traverse in the array for i in range(n): # add the frequencies cumul += hm[a[i]] # if the element has not been # visited previously if(hm[a[i]] > 0): print(a[i], "->", cumul) # mark the hash 0 # as the element's cumulative # frequency has been printed hm[a[i]] = 0 # Driver Code a = [1, 3, 2, 4, 2, 1] n = len(a) countFreq(a, n) # This code is contributed by mohit kumar
C#
// C# program to print the cumulative frequency // according to the order given using System; class GFG { // Function to print the cumulative frequency // according to the order given static void countFreq(int []a, int n) { // Insert elements and their // frequencies in hash map. int []hm = new int[n]; for (int i = 0; i < n; i++) hm[a[i]]++; int cumul = 0; // traverse in the array for(int i = 0; i < n; i++) { // add the frequencies cumul += hm[a[i]]; // if the element has not been // visited previously if(hm[a[i]] != 0) { Console.WriteLine(a[i] + "->" + cumul); } // mark the hash 0 // as the element's cumulative frequency // has been printed hm[a[i]] = 0; } } // Driver Code public static void Main(String[] args) { int []a = {1, 3, 2, 4, 2, 1}; int n = a.Length; countFreq(a, n); } } /* This code contributed by PrinciRaj1992 */
Javascript
<script> // Javascript program to print the cumulative frequency // according to the order given // Function to print the cumulative frequency // according to the order given function countFreq(a,n) { // Insert elements and their // frequencies in hash map. let hm = new Array(n); for(let i=0;i<hm.length;i++) { hm[i]=0; } for (let i = 0; i < n; i++) hm[a[i]]++; let cumul = 0; // traverse in the array for(let i = 0; i < n; i++) { // add the frequencies cumul += hm[a[i]]; // if the element has not been // visited previously if(hm[a[i]] != 0) { document.write(a[i] + "->" + cumul+"<br>"); } // mark the hash 0 // as the element's cumulative frequency // has been printed hm[a[i]] = 0; } } // Driver Code let a=[1, 3, 2, 4, 2, 1]; let n = a.length; countFreq(a, n); // This code is contributed by patel2127 </script>
1->2 3->3 2->5 4->6
Complejidad de tiempo: O(n), donde n es el tamaño de la array dada
Espacio auxiliar: O(n), ya que el espacio adicional de tamaño n se usa para crear un mapa
Este artículo es una contribución de Himanshu Ranjan . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA