Matplotlib.axis.Axis.pickable() función en Python

Matplotlib es una biblioteca en Python y es una extensión matemática numérica para la biblioteca NumPy. Es una biblioteca de visualización increíble en Python para gráficos 2D de arrays y se utiliza para trabajar con la pila SciPy más amplia.

función matplotlib.axis.Axis.pickable()

La función Axis.pickable() en el módulo de eje de la biblioteca matplotlib se usa para devolver si el artista es seleccionable o no. 
 

Sintaxis: Axis.pickable(self) 

Parámetros: este método no acepta ningún parámetro. 

Valor devuelto: este método devuelve si el artista es seleccionable. 

Los siguientes ejemplos ilustran la función matplotlib.axis.Axis.pickable() en matplotlib.axis:
Ejemplo 1:

Python3

# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np  
np.random.seed(19680801)  
import matplotlib.pyplot as plt  
       
    
volume = np.random.rayleigh(27, size = 40)  
amount = np.random.poisson(10, size = 40)  
ranking = np.random.normal(size = 40)  
price = np.random.uniform(1, 10, size = 40)  
       
fig, ax = plt.subplots()  
       
scatter = ax.scatter(volume * 2, amount * 3,  
                     c = ranking * 3,   
                     s = 0.3*(price * 3)**2,  
                     vmin = -4, vmax = 4,   
                     cmap = "Spectral")  
      
legend1 = ax.legend(*scatter.legend_elements(num = 5),  
                    loc ="upper left",  
                    title ="Ranking")  
      
ax.add_artist(legend1)  
      
ax.text(60, 30, "Value return : "
        + str(Axis.pickable(ax)),   
        fontweight ="bold",   
        fontsize = 18)
  
fig.suptitle('matplotlib.axis.Axis.pickable() \
function Example\n', fontweight ="bold")  
    
plt.show() 

Producción: 
 

Ejemplo 2:

Python3

# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np  
import matplotlib.pyplot as plt  
import matplotlib.cbook as cbook  
       
    
np.random.seed(10**7)  
data = np.random.lognormal(size =(10, 4),  
                           mean = 4.5,  
                           sigma = 4.75)  
      
labels = ['G1', 'G2', 'G3', 'G4']  
       
result = cbook.boxplot_stats(data,   
                             labels = labels,   
                             bootstrap = 1000)  
       
for n in range(len(result)):  
    result[n]['med'] = np.median(data)  
    result[n]['mean'] *= 0.1
      
fig, axes1 = plt.subplots()  
axes1.bxp(result)  
      
axes1.text(2, 30000,  
           "Value return : " 
           + str(Axis.pickable(axes1)),   
           fontweight ="bold")  
  
fig.suptitle('matplotlib.axis.Axis.pickable() \
function Example\n', fontweight ="bold")  
    
plt.show() 

Producción: 
 

Publicación traducida automáticamente

Artículo escrito por SHUBHAMSINGH10 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *