Función Numpy MaskedArray.astype() | Python

En muchas circunstancias, los conjuntos de datos pueden estar incompletos o contaminados por la presencia de datos no válidos. Por ejemplo, es posible que un sensor no haya podido registrar un dato o haya registrado un valor no válido. El módulo numpy.ma proporciona una forma conveniente de abordar este problema mediante la introducción de arrays enmascaradas. Las arrays enmascaradas son arrays que pueden tener entradas faltantes o no válidas.
La función numpy.MaskedArray.astype() devuelve una copia de la conversión de MaskedArray al nuevo tipo dado.
 

Sintaxis: numpy.MaskedArray.astype(newtype)
Parámetros:  
newtype: Tipo en el que queremos convertir la array enmascarada.
Regreso: [MaskedArray] Una copia de self cast para ingresar newtype. La forma de registro devuelta coincide con self.shape.

Código #1: 
 

Python3

# Python program explaining
# numpy.MaskedArray.astype() method
 
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
 
# creating input array
in_arr = geek.array([1, 2, 3, -1, 5])
print ("Input array : ", in_arr)
 
# Now we are creating a masked array of int32
# and making third entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[0, 0, 1, 0, 0])
print ("Masked array : ", mask_arr)
 
# printing the data type of masked array
print(mask_arr.dtype)
 
# applying MaskedArray.astype methods to mask array
# and converting it to float64
out_arr = mask_arr.astype('float64')
print ("Output typecasted array : ", out_arr)
 
# printing the data type of typecasted masked array
print(out_arr.dtype)
Producción: 

Input array :  [ 1  2  3 -1  5]
Masked array :  [1 2 -- -1 5]
int32
Output typecasted array :  [1.0 2.0 -- -1.0 5.0]
float64

 

 
Código #2: 
 

Python3

# Python program explaining
# numpy.MaskedArray.astype() method
 
# importing numpy as geek
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
 
# creating input array
in_arr = geek.array([10.1, 20.2, 30.3, 40.4, 50.5], dtype ='float64')
print ("Input array : ", in_arr)
 
# Now we are creating a masked array by making
# first and third entry as invalid.
mask_arr = ma.masked_array(in_arr, mask =[1, 0, 1, 0, 0])
print ("Masked array : ", mask_arr)
 
# printing the data type of masked array
print(mask_arr.dtype)
 
# applying MaskedArray.astype methods to mask array
# and converting it to int32
out_arr = mask_arr.astype('int32')
print ("Output typecasted array : ", out_arr)
 
# printing the data type of typecasted masked array
print(out_arr.dtype)
Producción: 

Input array :  [10.1 20.2 30.3 40.4 50.5]
Masked array :  [-- 20.2 -- 40.4 50.5]
float64
Output typecasted array :  [-- 20 -- 40 50]
int32

 

Publicación traducida automáticamente

Artículo escrito por jana_sayantan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *