Función Tensorflow.js tf.initializers.truncatedNormal()

Tensorflow.js es una biblioteca de código abierto desarrollada por Google para ejecutar modelos de aprendizaje automático y redes neuronales de aprendizaje profundo en el entorno del navegador o del Node. También ayuda a los desarrolladores a desarrollar modelos ML en lenguaje JavaScript y puede usar ML directamente en el navegador o en Node.js.

La función tf.initializers.truncatedNormal() produce valores aleatorios inicializados en una distribución normal truncada.

Sintaxis:

tf.initializers.truncatedNormal(arguments)

Parámetros: toma un objeto como argumento que contiene cualquiera de los valores clave que se enumeran a continuación:

  • media: Es la media de los valores aleatorios a generar.
  • stddev: Es la desviación estándar de los valores aleatorios a generar.
  • semilla: Es la semilla del generador de números aleatorios.

Devuelve valor: Devuelve tf.initializers.Initializer

Ejemplo 1:

Javascript

// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
 
// Initializing the .initializers.truncatedNormal()
// function
let geek = tf.initializers.truncatedNormal(13)
 
// Printing gain value
console.log(geek);
 
// Printing individual gain value
console.log('\nIndividual values:\n');
console.log(geek.DEFAULT_MEAN);
console.log(geek.DEFAULT_STDDEV);
console.log(geek.mean);
console.log(geek.stddev);

Producción:

{
  "DEFAULT_MEAN": 0,
  "DEFAULT_STDDEV": 0.05,
  "mean": 0,
  "stddev": 0.05
}

Individual values:

0
0.05
0
0.05

Ejemplo 2: 

Javascript

// Importing the tensorflow.Js library
import * as tf from "@tensorflow/tfjs
 
// Defining the input value
const inputValue = tf.input({shape:[4]});
 
// Initializing tf.initializers.truncatedNormal()
// function
const funcValue = tf.initializers.truncatedNormal(11)
 
// Creating dense layer 1
const dense_layer_1 = tf.layers.dense({
    units: 4,
    activation: 'relu',
    kernelInitialize: funcValue
});
 
// Creating dense layer 2
const dense_layer_2 = tf.layers.dense({
    units: 6,
    activation: 'softmax'
});
 
// Output
const outputValue = dense_layer_2.apply(
  dense_layer_1.apply(inputValue)
);
 
// Creation the model.
const model = tf.model(
  {
    inputs: inputValue,
    outputs: outputValue
  });
 
// Predicting the output.
model.predict(tf.ones([2, 4])).print();

Producción:

Tensor
    [[0.1830122, 0.1198884, 0.1611279, 
      0.2659391, 0.1296039, 0.1404286],
     [0.1830122, 0.1198884, 0.1611279, 
      0.2659391, 0.1296039, 0.1404286]]

Referencia: https://js.tensorflow.org/api/3.6.0/#initializers.truncatedNormal

Publicación traducida automáticamente

Artículo escrito por thacker_shahid y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *