Dados dos árboles de búsqueda binarios (BST), imprima los elementos de ambos BST en forma ordenada. La complejidad de tiempo esperada es O(m+n) donde m es el número de Nodes en el primer árbol yn es el número de Nodes en el segundo árbol. El espacio auxiliar máximo permitido es O (altura del primer árbol + altura del segundo árbol).
Ejemplos:
First BST 3 / \ 1 5 Second BST 4 / \ 2 6 Output: 1 2 3 4 5 6 First BST 8 / \ 2 10 / 1 Second BST 5 / 3 / 0 Output: 0 1 2 3 5 8 10
Fuente: pregunta de la entrevista de Google
Una pregunta similar ha sido discutida anteriormente. Primero analicemos los métodos ya discutidos de la publicación anterior que fue para BST equilibrados. El método 1 también se puede aplicar aquí, pero la complejidad del tiempo será O (n ^ 2) en el peor de los casos. El método 2 también se puede aplicar aquí, pero el espacio adicional requerido será O(n), lo que viola la restricción dada en esta pregunta. El método 3 se puede aplicar aquí, pero el paso 3 del método 3 no se puede realizar en O (n) para un BST desequilibrado.
Gracias a Kumar por sugerir la siguiente solución.
La idea es utilizar un recorrido iterativo en orden.. Usamos dos pilas auxiliares para dos BST. Dado que necesitamos imprimir los elementos en forma ordenada, cada vez que obtenemos un elemento más pequeño de cualquiera de los árboles, lo imprimimos. Si el elemento es mayor, lo empujamos de nuevo a la pila para la próxima iteración.
C++
#include <bits/stdc++.h> using namespace std; // Structure of a BST Node class node { public: int data; node *left; node *right; }; //.................... START OF STACK RELATED STUFF.................... // A stack node class snode { public: node *t; snode *next; }; // Function to add an element k to stack void push(snode **s, node *k) { snode *tmp = new snode(); //perform memory check here tmp->t = k; tmp->next = *s; (*s) = tmp; } // Function to pop an element t from stack node *pop(snode **s) { node *t; snode *st; st=*s; (*s) = (*s)->next; t = st->t; free(st); return t; } // Function to check whether the stack is empty or not int isEmpty(snode *s) { if (s == NULL ) return 1; return 0; } //.................... END OF STACK RELATED STUFF.................... /* Utility function to create a new Binary Tree node */ node* newNode (int data) { node *temp = new node; temp->data = data; temp->left = NULL; temp->right = NULL; return temp; } /* A utility function to print Inorder traversal of a Binary Tree */ void inorder(node *root) { if (root != NULL) { inorder(root->left); cout<<root->data<<" "; inorder(root->right); } } // The function to print data of two BSTs in sorted order void merge(node *root1, node *root2) { // s1 is stack to hold nodes of first BST snode *s1 = NULL; // Current node of first BST node *current1 = root1; // s2 is stack to hold nodes of second BST snode *s2 = NULL; // Current node of second BST node *current2 = root2; // If first BST is empty, then output is inorder // traversal of second BST if (root1 == NULL) { inorder(root2); return; } // If second BST is empty, then output is inorder // traversal of first BST if (root2 == NULL) { inorder(root1); return ; } // Run the loop while there are nodes not yet printed. // The nodes may be in stack(explored, but not printed) // or may be not yet explored while (current1 != NULL || !isEmpty(s1) || current2 != NULL || !isEmpty(s2)) { // Following steps follow iterative Inorder Traversal if (current1 != NULL || current2 != NULL ) { // Reach the leftmost node of both BSTs and push ancestors of // leftmost nodes to stack s1 and s2 respectively if (current1 != NULL) { push(&s1, current1); current1 = current1->left; } if (current2 != NULL) { push(&s2, current2); current2 = current2->left; } } else { // If we reach a NULL node and either of the stacks is empty, // then one tree is exhausted, print the other tree if (isEmpty(s1)) { while (!isEmpty(s2)) { current2 = pop (&s2); current2->left = NULL; inorder(current2); } return ; } if (isEmpty(s2)) { while (!isEmpty(s1)) { current1 = pop (&s1); current1->left = NULL; inorder(current1); } return ; } // Pop an element from both stacks and compare the // popped elements current1 = pop(&s1); current2 = pop(&s2); // If element of first tree is smaller, then print it // and push the right subtree. If the element is larger, // then we push it back to the corresponding stack. if (current1->data < current2->data) { cout<<current1->data<<" "; current1 = current1->right; push(&s2, current2); current2 = NULL; } else { cout<<current2->data<<" "; current2 = current2->right; push(&s1, current1); current1 = NULL; } } } } /* Driver program to test above functions */ int main() { node *root1 = NULL, *root2 = NULL; /* Let us create the following tree as first tree 3 / \ 1 5 */ root1 = newNode(3); root1->left = newNode(1); root1->right = newNode(5); /* Let us create the following tree as second tree 4 / \ 2 6 */ root2 = newNode(4); root2->left = newNode(2); root2->right = newNode(6); // Print sorted nodes of both trees merge(root1, root2); return 0; } //This code is contributed by rathbhupendra
C
#include<stdio.h> #include<stdlib.h> // Structure of a BST Node struct node { int data; struct node *left; struct node *right; }; //.................... START OF STACK RELATED STUFF.................... // A stack node struct snode { struct node *t; struct snode *next; }; // Function to add an element k to stack void push(struct snode **s, struct node *k) { struct snode *tmp = (struct snode *) malloc(sizeof(struct snode)); //perform memory check here tmp->t = k; tmp->next = *s; (*s) = tmp; } // Function to pop an element t from stack struct node *pop(struct snode **s) { struct node *t; struct snode *st; st=*s; (*s) = (*s)->next; t = st->t; free(st); return t; } // Function to check whether the stack is empty or not int isEmpty(struct snode *s) { if (s == NULL ) return 1; return 0; } //.................... END OF STACK RELATED STUFF.................... /* Utility function to create a new Binary Tree node */ struct node* newNode (int data) { struct node *temp = (struct node*)malloc(sizeof(struct node)); temp->data = data; temp->left = NULL; temp->right = NULL; return temp; } /* A utility function to print Inorder traversal of a Binary Tree */ void inorder(struct node *root) { if (root != NULL) { inorder(root->left); printf("%d ", root->data); inorder(root->right); } } // The function to print data of two BSTs in sorted order void merge(struct node *root1, struct node *root2) { // s1 is stack to hold nodes of first BST struct snode *s1 = NULL; // Current node of first BST struct node *current1 = root1; // s2 is stack to hold nodes of second BST struct snode *s2 = NULL; // Current node of second BST struct node *current2 = root2; // If first BST is empty, then output is inorder // traversal of second BST if (root1 == NULL) { inorder(root2); return; } // If second BST is empty, then output is inorder // traversal of first BST if (root2 == NULL) { inorder(root1); return ; } // Run the loop while there are nodes not yet printed. // The nodes may be in stack(explored, but not printed) // or may be not yet explored while (current1 != NULL || !isEmpty(s1) || current2 != NULL || !isEmpty(s2)) { // Following steps follow iterative Inorder Traversal if (current1 != NULL || current2 != NULL ) { // Reach the leftmost node of both BSTs and push ancestors of // leftmost nodes to stack s1 and s2 respectively if (current1 != NULL) { push(&s1, current1); current1 = current1->left; } if (current2 != NULL) { push(&s2, current2); current2 = current2->left; } } else { // If we reach a NULL node and either of the stacks is empty, // then one tree is exhausted, print the other tree if (isEmpty(s1)) { while (!isEmpty(s2)) { current2 = pop (&s2); current2->left = NULL; inorder(current2); } return ; } if (isEmpty(s2)) { while (!isEmpty(s1)) { current1 = pop (&s1); current1->left = NULL; inorder(current1); } return ; } // Pop an element from both stacks and compare the // popped elements current1 = pop(&s1); current2 = pop(&s2); // If element of first tree is smaller, then print it // and push the right subtree. If the element is larger, // then we push it back to the corresponding stack. if (current1->data < current2->data) { printf("%d ", current1->data); current1 = current1->right; push(&s2, current2); current2 = NULL; } else { printf("%d ", current2->data); current2 = current2->right; push(&s1, current1); current1 = NULL; } } } } /* Driver program to test above functions */ int main() { struct node *root1 = NULL, *root2 = NULL; /* Let us create the following tree as first tree 3 / \ 1 5 */ root1 = newNode(3); root1->left = newNode(1); root1->right = newNode(5); /* Let us create the following tree as second tree 4 / \ 2 6 */ root2 = newNode(4); root2->left = newNode(2); root2->right = newNode(6); // Print sorted nodes of both trees merge(root1, root2); return 0; }
Java
public class Merge2BST { /* A utility function to print Inorder traversal of a Binary Tree */ static void inorder(Node root) { if (root != null) { inorder(root.left); System.out.print(root.data + " "); inorder(root.right); } } // The function to print data of two BSTs in sorted order static void merge(Node root1, Node root2) { // s1 is stack to hold nodes of first BST SNode s1 = new SNode(); // Current node of first BST Node current1 = root1; // s2 is stack to hold nodes of second BST SNode s2 = new SNode(); // Current node of second BST Node current2 = root2; // If first BST is empty, then output is inorder // traversal of second BST if (root1 == null) { inorder(root2); return; } // If second BST is empty, then output is inorder // traversal of first BST if (root2 == null) { inorder(root1); return ; } // Run the loop while there are nodes not yet printed. // The nodes may be in stack(explored, but not printed) // or may be not yet explored while (current1 != null || !s1.isEmpty() || current2 != null || !s2.isEmpty()) { // Following steps follow iterative Inorder Traversal if (current1 != null || current2 != null ) { // Reach the leftmost node of both BSTs and push ancestors of // leftmost nodes to stack s1 and s2 respectively if (current1 != null) { s1.push( current1); current1 = current1.left; } if (current2 != null) { s2.push( current2); current2 = current2.left; } } else { // If we reach a NULL node and either of the stacks is empty, // then one tree is exhausted, print the other tree if (s1.isEmpty()) { while (!s2.isEmpty()) { current2 = s2.pop (); current2.left = null; inorder(current2); } return ; } if (s2.isEmpty()) { while (!s1.isEmpty()) { current1 = s1.pop (); current1.left = null; inorder(current1); } return ; } // Pop an element from both stacks and compare the // popped elements current1 = s1.pop(); current2 = s2.pop(); // If element of first tree is smaller, then print it // and push the right subtree. If the element is larger, // then we push it back to the corresponding stack. if (current1.data < current2.data) { System.out.print(current1.data + " "); current1 = current1.right; s2.push( current2); current2 = null; } else { System.out.print(current2.data + " "); current2 = current2.right; s1.push( current1); current1 = null; } } } System.out.println(s1.t); System.out.println(s2.t); } /* Driver code */ public static void main(String[]args) { Node root1 = null, root2 = null; /* Let us create the following tree as first tree 3 / \ 1 5 */ root1 = new Node(3) ; root1.left = new Node(1); root1.right = new Node(5); /* Let us create the following tree as second tree 4 / \ 2 6 */ root2 = new Node(4) ; root2.left = new Node(2); root2.right = new Node(6); // Print sorted nodes of both trees merge(root1, root2); } } // Structure of a BST Node class Node { int data; Node left; Node right; public Node(int data) { // TODO Auto-generated constructor stub this.data = data; this.left = null; this.right = null; } } // A stack node class SNode { SNode head; Node t; SNode next; // Function to add an element k to stack void push(Node k) { SNode tmp = new SNode(); // Perform memory check here tmp.t = k; tmp.next = this.head; this.head = tmp; } // Function to pop an element t from stack Node pop() { SNode st; st = this.head; head = head.next; return st.t; } // Function to check whether the stack is empty or not boolean isEmpty( ) { if (this.head == null ) return true; return false; } } // This code is contributed by nidhisebastian008
Python 3
# Class to create a new Tree Node class newNode: def __init__(self, data: int): self.data = data self.left = None self.right = None def inorder(root: newNode): if root: inorder(root.left) print(root.data, end=" ") inorder(root.right) def merge(root1: newNode, root2: newNode): # s1 is stack to hold nodes of first BST s1 = [] # Current node of first BST current1 = root1 # s2 is stack to hold nodes of first BST s2 = [] # Current node of second BST current2 = root2 # If first BST is empty then the output is the # inorder traversal of the second BST if not root1: return inorder(root2) # If the second BST is empty then the output is the # inorder traversal of the first BST if not root2: return inorder(root1) # Run the loop while there are nodes not yet printed. # The nodes may be in stack(explored, but not printed) # or may be not yet explored while current1 or s1 or current2 or s2: # Following steps follow iterative Inorder Traversal if current1 or current2: # Reach the leftmost node of both BSTs and push ancestors of # leftmost nodes to stack s1 and s2 respectively if current1: s1.append(current1) current1 = current1.left if current2: s2.append(current2) current2 = current2.left else: # If we reach a NULL node and either of the stacks is empty, # then one tree is exhausted, print the other tree if not s1: while s2: current2 = s2.pop() current2.left = None inorder(current2) return if not s2: while s1: current1 = s1.pop() current1.left = None inorder(current1) return # Pop an element from both stacks and compare the # popped elements current1 = s1.pop() current2 = s2.pop() # If element of first tree is smaller, then print it # and push the right subtree. If the element is larger, # then we push it back to the corresponding stack. if current1.data < current2.data: print(current1.data, end=" ") current1 = current1.right s2.append(current2) current2 = None else: print(current2.data, end=" ") current2 = current2.right s1.append(current1) current1 = None # Driver code def main(): # Let us create the following tree as first tree # 3 # / \ # 1 5 root1 = newNode(3) root1.left = newNode(1) root1.right = newNode(5) # Let us create the following tree as second tree # 4 # / \ # 2 6 # root2 = newNode(4) root2.left = newNode(2) root2.right = newNode(6) merge(root1, root2) if __name__ == "__main__": main() # This code is contributed by Koushik Reddy Bukkasamudram
C#
// C# program to implement the // above approach using System; class Merge2BST{ /* A utility function to print Inorder traversal of a Binary Tree */ static void inorder(Node root) { if (root != null) { inorder(root.left); Console.Write(root.data + " "); inorder(root.right); } } // The function to print data // of two BSTs in sorted order static void merge(Node root1, Node root2) { // s1 is stack to hold nodes // of first BST SNode s1 = new SNode(); // Current node of first BST Node current1 = root1; // s2 is stack to hold nodes // of second BST SNode s2 = new SNode(); // Current node of second BST Node current2 = root2; // If first BST is empty, then // output is inorder traversal // of second BST if (root1 == null) { inorder(root2); return; } // If second BST is empty, // then output is inorder // traversal of first BST if (root2 == null) { inorder(root1); return ; } // Run the loop while there // are nodes not yet printed. // The nodes may be in stack // (explored, but not printed) // or may be not yet explored while (current1 != null || !s1.isEmpty() || current2 != null || !s2.isEmpty()) { // Following steps follow // iterative Inorder Traversal if (current1 != null || current2 != null) { // Reach the leftmost node of // both BSTs and push ancestors // of leftmost nodes to stack // s1 and s2 respectively if (current1 != null) { s1.push(current1); current1 = current1.left; } if (current2 != null) { s2.push(current2); current2 = current2.left; } } else { // If we reach a NULL node and // either of the stacks is empty, // then one tree is exhausted, // print the other tree if (s1.isEmpty()) { while (!s2.isEmpty()) { current2 = s2.pop (); current2.left = null; inorder(current2); } return; } if (s2.isEmpty()) { while (!s1.isEmpty()) { current1 = s1.pop (); current1.left = null; inorder(current1); } return; } // Pop an element from both // stacks and compare the // popped elements current1 = s1.pop(); current2 = s2.pop(); // If element of first tree is // smaller, then print it // and push the right subtree. // If the element is larger, // then we push it back to the // corresponding stack. if (current1.data < current2.data) { Console.Write(current1.data + " "); current1 = current1.right; s2.push( current2); current2 = null; } else { Console.Write(current2.data + " "); current2 = current2.right; s1.push( current1); current1 = null; } } } Console.Write(s1.t + "\n"); Console.Write(s2.t + "\n"); } // Driver code public static void Main(string[]args) { Node root1 = null, root2 = null; /* Let us create the following tree as first tree 3 / \ 1 5 */ root1 = new Node(3) ; root1.left = new Node(1); root1.right = new Node(5); /* Let us create the following tree as second tree 4 / \ 2 6 */ root2 = new Node(4) ; root2.left = new Node(2); root2.right = new Node(6); // Print sorted nodes of // both trees merge(root1, root2); } } // Structure of a BST Node class Node{ public int data; public Node left; public Node right; public Node(int data) { // TODO Auto-generated // constructor stub this.data = data; this.left = null; this.right = null; } } // A stack node class SNode{ SNode head; public Node t; SNode next; // Function to add an element // k to stack public void push(Node k) { SNode tmp = new SNode(); // Perform memory check here tmp.t = k; tmp.next = this.head; this.head = tmp; } // Function to pop an element // t from stack public Node pop() { SNode st; st = this.head; head = head.next; return st.t; } // Function to check whether // the stack is empty or not public bool isEmpty() { if (this.head == null ) return true; return false; } } // This code is contributed by Rutvik_56
Javascript
<script> // JavaScript program to implement the // above approach // Structure of a BST Node class Node { constructor(data) { // TODO Auto-generated // constructor stub this.data = data; this.left = null; this.right = null; } } // A stack node class SNode { constructor() { this.head = null; this.t = null; this.next = null; } // Function to add an element // k to stack push(k) { var tmp = new SNode(); // Perform memory check here tmp.t = k; tmp.next = this.head; this.head = tmp; } // Function to pop an element // t from stack pop() { var st; st = this.head; this.head = this.head.next; return st.t; } // Function to check whether // the stack is empty or not isEmpty() { if (this.head == null) return true; return false; } } /* A utility function to print Inorder traversal of a Binary Tree */ function inorder(root) { if (root != null) { inorder(root.left); document.write(root.data + " "); inorder(root.right); } } // The function to print data // of two BSTs in sorted order function merge(root1, root2) { // s1 is stack to hold nodes // of first BST var s1 = new SNode(); // Current node of first BST var current1 = root1; // s2 is stack to hold nodes // of second BST var s2 = new SNode(); // Current node of second BST var current2 = root2; // If first BST is empty, then // output is inorder traversal // of second BST if (root1 == null) { inorder(root2); return; } // If second BST is empty, // then output is inorder // traversal of first BST if (root2 == null) { inorder(root1); return; } // Run the loop while there // are nodes not yet printed. // The nodes may be in stack // (explored, but not printed) // or may be not yet explored while ( current1 != null || !s1.isEmpty() || current2 != null || !s2.isEmpty() ) { // Following steps follow // iterative Inorder Traversal if (current1 != null || current2 != null) { // Reach the leftmost node of // both BSTs and push ancestors // of leftmost nodes to stack // s1 and s2 respectively if (current1 != null) { s1.push(current1); current1 = current1.left; } if (current2 != null) { s2.push(current2); current2 = current2.left; } } else { // If we reach a NULL node and // either of the stacks is empty, // then one tree is exhausted, // print the other tree if (s1.isEmpty()) { while (!s2.isEmpty()) { current2 = s2.pop(); current2.left = null; inorder(current2); } return; } if (s2.isEmpty()) { while (!s1.isEmpty()) { current1 = s1.pop(); current1.left = null; inorder(current1); } return; } // Pop an element from both // stacks and compare the // popped elements current1 = s1.pop(); current2 = s2.pop(); // If element of first tree is // smaller, then print it // and push the right subtree. // If the element is larger, // then we push it back to the // corresponding stack. if (current1.data < current2.data) { document.write(current1.data + " "); current1 = current1.right; s2.push(current2); current2 = null; } else { document.write(current2.data + " "); current2 = current2.right; s1.push(current1); current1 = null; } } } document.write(s1.t + "<br>"); document.write(s2.t + "<br>"); } // Driver code var root1 = null, root2 = null; /* Let us create the following tree as first tree 3 / \ 1 5 */ root1 = new Node(3); root1.left = new Node(1); root1.right = new Node(5); /* Let us create the following tree as second tree 4 / \ 2 6 */ root2 = new Node(4); root2.left = new Node(2); root2.right = new Node(6); // Print sorted nodes of // both trees merge(root1, root2); </script>
1 2 3 4 5 6
Complejidad temporal: O(m+n)
Espacio auxiliar: O(altura del primer árbol + altura del segundo árbol)
A continuación se proporciona otra versión más simple de resolver el problema usando dos pilas:
En este método, estoy usando la pila incorporada presente en la biblioteca STL para deshacerme de la implementación de la parte del código de la pila que se hizo en la implementación anterior.
Paso 1: considere dos pilas s1 y s2 que almacenan el elemento de los dos árboles.
Paso 2: – Almacene el valor de la vista izquierda de un árbol1 en s1 y del árbol2 en s2.
Paso 3: compare los valores principales presentes en la pila y empuje el valor en consecuencia en el vector de resultados.
Caso 1: si s2 está vacío, extraiga s1 y coloque el valor del Node extraído en el vector de respuesta; de
lo contrario, si tanto s1 como s2 no están vacíos, compare el valor de sus Nodes superiores
si s1.top()->val <= s2.top()->val luego, en este caso, empuje el s1.top()->val en el vector de resultados y empuje su hijo derecho en la pila s1Caso 2: si s1 está vacío, extraiga s2 y coloque el valor del Node extraído en el vector de respuesta; de
lo contrario, si tanto s1 como s2 no están vacíos, compare el valor de sus Nodes superiores
si s2.top()->val >= s1.top()->val luego, en este caso, empuje el s2.top()->val en el vector de resultados y empuje su hijo derecho en la pila s2Paso 4: – Continúe con el paso 3 hasta que ambas pilas se vacíen.
A continuación se muestra la implementación de la lógica anterior: –
C++
#include <bits/stdc++.h> using namespace std; // Structure of a BST Node class Node { public: int val; Node* left; Node* right; }; /* Utility function to create a new Binary Tree Node */ Node* newNode(int data) { Node* temp = new Node; temp->val = data; temp->left = nullptr; temp->right = nullptr; return temp; } vector<int> mergeTwoBST(Node* root1, Node* root2) { vector<int> res; stack<Node*> s1, s2; while (root1 || root2 || !s1.empty() || !s2.empty()) { while (root1) { s1.push(root1); root1 = root1->left; } while (root2) { s2.push(root2); root2 = root2->left; } // Step 3 Case 1:- if (s2.empty() || (!s1.empty() && s1.top()->val <= s2.top()->val)) { root1 = s1.top(); s1.pop(); res.push_back(root1->val); root1 = root1->right; } // Step 3 case 2 :- else { root2 = s2.top(); s2.pop(); res.push_back(root2->val); root2 = root2->right; } } return res; } /* Driver program to test above functions */ int main() { Node *root1 = nullptr, *root2 = nullptr; /* Let us create the following tree as first tree 3 / \ 1 5 */ root1 = newNode(3); root1->left = newNode(1); root1->right = newNode(5); /* Let us create the following tree as second tree 4 / \ 2 6 */ root2 = newNode(4); root2->left = newNode(2); root2->right = newNode(6); // Print sorted Nodes of both trees vector<int> ans = mergeTwoBST(root1, root2); for (auto it : ans) cout << it << " "; return 0; } // This code is contributed by Aditya kumar (adityakumar129)
Java
// Java Code for the above approach import java.io.*; import java.util.*; // Structure of a BST Node class Node { int data; Node left; Node right; public Node(int data) { // TODO Auto-generated constructor stub this.data = data; this.left = null; this.right = null; } } class GFG { static void mergeTwoBST(Node root1, Node root2) { List<Integer> res = new ArrayList<Integer>(); Stack<Node> s1 = new Stack<Node>(); Stack<Node> s2 = new Stack<Node>(); while (root1 != null || root2 != null || !s1.isEmpty() || !s2.isEmpty()) { while (root1 != null) { s1.push(root1); root1 = root1.left; } while (root2 != null) { s2.push(root2); root2 = root2.left; } if (s2.isEmpty() || (!s1.isEmpty() && s1.peek().data <= s2.peek().data)) { root1 = s1.peek(); s1.pop(); res.add(root1.data); root1 = root1.right; } else { root2 = s2.peek(); s2.pop(); res.add(root2.data); root2 = root2.right; } } for (int i = 0; i < res.size(); i++) { System.out.print(res.get(i) + " "); } } public static void main(String[] args) { Node root1 = null, root2 = null; /* Let us create the following tree as first tree 3 / \ 1 5 */ root1 = new Node(3); root1.left = new Node(1); root1.right = new Node(5); /* Let us create the following tree as second tree 4 / \ 2 6 */ root2 = new Node(4); root2.left = new Node(2); root2.right = new Node(6); mergeTwoBST(root1, root2); } } // This code is contributed by lokesh(lokeshmvs21).
1 2 3 4 5 6
Complejidad temporal: O(m+n)
Espacio auxiliar: O(altura del primer árbol + altura del segundo árbol)
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA