If p, q, r, s are distinct integers such that: f(p, q, r, s) = max (p, q, r, s) g(p, q, r, s) = min (p, q, r, s) h(p, q, r, s) = remainder of (p × q) / (r × s) if (p × q) > (r × s) OR remainder of (r × s) / (p × q) if (r × s) > (p × q) Also a function fgh (p, q, r, s) = f(p, q, r, s) × g(p, q, r, s) × h(p, q, r, s). Also the same operation are valid with two variable functions of the form f(p, q). What is the value of fg(h(2, 5, 7, 3), 4, 6, 8)?
(A) 6
(B) 7
(C) 8
(D) 9
Respuesta: (C)
Explicación:
The question asks value of fg (h(2, 5, 7, 3), 4, 6, 8) We need to first find value of h(2, 5, 7, 3) h is defined as h(p, q, r, s) = remainder of (p × q) / (r × s) if (p × q) > (r × s) remainder of (r × s) / (r × q) if (r × s) > (p × q) h(2, 5, 7, 3) = remainder of (7 * 3) / (2 * 5) since 7*3 > 2*5 = 1 fg(1, 4, 6, 8) = f(1, 4, 6, 8) * g(1, 4, 6, 8) = max(1, 4, 6, 8) * min(1, 4, 6, 8) = 8 * 1 = 8
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA