PUERTA | Puerta TI 2005 | Pregunta 50

En un árbol binario, para cada Node, la diferencia entre el número de Nodes en los subárboles izquierdo y derecho es como máximo 2. Si la altura del árbol es h > 0, entonces el número mínimo de Nodes en el árbol es:
(A ) 2 h – 1
(B) 2 h – 1 + 1
(C) 2 h – 1
(D) 2 h

Respuesta: (B)
Explicación:

Let there be n(h) nodes at height h.

In a perfect tree where every node has exactly 
two children, except leaves, following recurrence holds.

n(h) = 2*n(h-1) + 1

In given case, the numbers of nodes are two less, therefore
n(h) = 2*n(h-1) + 1 - 2
     = 2*n(h-1) - 1

Now if try all options, only option (b) satisfies above recurrence.

Let us see option (B)
n(h) = 2h - 1 + 1

So if we substitute 
n(h-1) = 2h-2 + 1, we should get n(h) = 2h-1 + 1

n(h) =  2*n(h-1) - 1
     =  2*(2h-2 + 1) -1
     =  2h-1 + 1.

Cuestionario de esta pregunta

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *