Haga que la array dada sea una array de montaña eliminando la cantidad mínima de elementos

Dada una array arr[] de longitud N , la tarea es eliminar la cantidad mínima de elementos de la array para convertirla en una array montañosa y luego imprimirla.

Nota: Una array de montaña es una array donde hay un índice i tal que arr[0] < arr[1] < . . .< arr[i-1] < arr[i] > arr[i+1] > . . . > arr[N-1]. Además, un conjunto de montañas debe tener una longitud mayor o igual a 3 para satisfacer la condición anterior.

Ejemplos:

Entrada: arr[] = {9, 8, 1, 7, 6, 5, 4, 3, 2, 1}
Salida: 1 7 6 5 4 3 2 1
Explicación: elimine los elementos 9, 8. La array resultante es la array de la montaña. 
Es el mínimo número de eliminaciones posibles.

Entrada: arr[] = {1, 1, 1};
Salida: -1
Explicación: Esta array no se puede transformar en una array de montaña

 

Enfoque: siga los pasos a continuación para resolver este problema:

  • Cree dos arrays izquierda y derecha .
  • Para cada índice i , left[i] almacenará la subsecuencia creciente más larga que termina en i y right[i] almacenará la subsecuencia decreciente más larga que comienza en i.
  • Ahora, encuentre la longitud máxima de la subsecuencia de la montaña asumiendo que cada índice es el pico de la montaña.

Longitud de la subsecuencia montañosa que tiene un pico en i = izquierda[i]+derecha[i]-1

  • Encuentre la longitud máxima de la subsecuencia de montaña, digamos max y realice un seguimiento del pico para el que se alcanza la longitud máxima.
  • Entonces, el número mínimo de eliminaciones es (N – max) .
  • Ahora imprima la subsecuencia creciente más larga desde el inicio hasta i y la subsecuencia decreciente más larga desde i hasta el final de la array.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the mountain array
// after minimum removals
void mountArray(vector<int>& arr)
{
  int N = arr.size();
  vector<int> left(N, 1), right(N, 1);
 
  for (int i = 0; i < N; ++i) {
    for (int j = 0; j <= i; ++j) {
      if (arr[j] < arr[i]) {
 
        // This means the
        // previous number is
        // smaller than the number
        left[i] = max(left[j] + 1, left[i]);
      }
    }
  }
 
  // Find the longest decreasing sequence
  for (int i = N - 1; i >= 0; --i) {
    for (int j = i; j <= N - 1; ++j) {
      if (arr[j] < arr[i]) {
        right[i] = max(right[j] + 1, right[i]);
      }
    }
  }
  int max = 0;
  int index = 0;
  for (int i = 1; i < N - 1; ++i) {
    if (left[i] != 1 && right[i] != 1) {
 
      if (max < (left[i] + right[i]) - 1) {
        index = i;
        max = (left[i] + right[i]) - 1;
      }
    }
  }
 
  // Print the longest continuous
  // subsequence from 0 to ith
  // and ith to N index
  vector<int> left1;
 
  left1.push_back(arr[index]);
  for (int i = index; i >= 0; --i) {
    if (arr[i] < arr[index]) {
 
      // There is possibility
      // either the index is
      // used or not
      if (left[i] + 1 == left[index]) {
        left1.push_back(arr[i]);
        left[index] -= 1;
      }
    }
  }
 
  vector<int> right1;
 
  // Starting the right
  for (int i = index; i < right.size(); ++i) {
    if (arr[index] > arr[i]) {
 
      if (right[i] + 1 == right[index]) {
        right1.push_back(arr[i]);
        right[index] -= 1;
      }
    }
  }
  if (max < 3) {
    cout << (-1) << "\n";
  }
  else {
 
    // Print the first left1 array
    // then the right array
    for (int i = left1.size() - 1; i >= 0; --i) {
      cout << left1[i] << " ";
    }
    for (int i = 0; i < right1.size(); ++i) {
      cout << right1[i] << " ";
    }
  }
}
 
// Driver code
int main()
{
  vector<int> arr = { 9, 8, 1, 7, 6, 5, 4, 3, 2, 1 };
  mountArray(arr);
}
 
// This code is contributed by Taranpreet

Java

// Java program for the above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to print the mountain array
    // after minimum removals
    public static void mountArray(int arr[])
    {
        int N = arr.length;
        int left[] = new int[N];
        int right[] = new int[N];
        Arrays.fill(left, 1);
        Arrays.fill(right, 1);
 
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j <= i; ++j) {
                if (arr[j] < arr[i]) {
 
                    // This means the
                    // previous number is
                    // smaller than the number
                    left[i] = Math.max(left[j]
                                           + 1,
                                       left[i]);
                }
            }
        }
 
        // Find the longest decreasing sequence
        for (int i = N - 1; i >= 0; --i) {
            for (int j = i; j <= N - 1; ++j) {
                if (arr[j] < arr[i]) {
                    right[i]
                        = Math.max(right[j]
                                       + 1,
                                   right[i]);
                }
            }
        }
        int max = 0;
        int index = 0;
        for (int i = 1; i < N - 1; ++i) {
            if (left[i] != 1
                && right[i] != 1) {
 
                if (max < (left[i]
                           + right[i])
                              - 1) {
                    index = i;
                    max = (left[i]
                           + right[i])
                          - 1;
                }
            }
        }
 
        // Print the longest continuous
        // subsequence from 0 to ith
        // and ith to N index
        ArrayList<Integer> left1
            = new ArrayList<Integer>();
 
        left1.add(arr[index]);
        for (int i = index; i >= 0; --i) {
            if (arr[i] < arr[index]) {
 
                // There is possibility
                // either the index is
                // used or not
                if (left[i] + 1 == left[index]) {
                    left1.add(arr[i]);
                    left[index] -= 1;
                }
            }
        }
 
        ArrayList<Integer> right1
            = new ArrayList<>();
 
        // Starting the right
        for (int i = index; i
                            < right.length;
             ++i) {
            if (arr[index] > arr[i]) {
 
                if (right[i] + 1
                    == right[index]) {
                    right1.add(arr[i]);
                    right[index] -= 1;
                }
            }
        }
        if (max < 3) {
            System.out.println(-1);
        }
        else {
 
            // Print the first left1 array
            // then the right array
            for (int i = left1.size() - 1;
                 i >= 0; --i) {
                System.out.print(left1.get(i)
                                 + " ");
            }
            for (int i = 0; i < right1.size();
                 ++i) {
                System.out.print(right1.get(i)
                                 + " ");
            }
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 9, 8, 1, 7, 6, 5, 4, 3, 2, 1 };
        mountArray(arr);
    }
}

Python3

# python3 program for the above approach
 
# Function to print the mountain array
# after minimum removals
 
 
def mountArray(arr):
 
    N = len(arr)
    left, right = [1 for _ in range(N)], [1 for _ in range(N)]
 
    for i in range(0, N):
        for j in range(0, i+1):
            if (arr[j] < arr[i]):
 
                # This means the
                # previous number is
                # smaller than the number
                left[i] = max(left[j] + 1, left[i])
 
    # Find the longest decreasing sequence
    for i in range(N-1, -1, -1):
        for j in range(i, N):
            if (arr[j] < arr[i]):
                right[i] = max(right[j] + 1, right[i])
 
    maxi = 0
    index = 0
    for i in range(1, N-1):
        if (left[i] != 1 and right[i] != 1):
 
            if (maxi < (left[i] + right[i]) - 1):
                index = i
                maxi = (left[i] + right[i]) - 1
 
    # Print the longest continuous
    # subsequence from 0 to ith
    # and ith to N index
    left1 = []
 
    left1.append(arr[index])
    for i in range(index, -1, -1):
        if (arr[i] < arr[index]):
 
            # There is possibility
            # either the index is
            # used or not
            if (left[i] + 1 == left[index]):
                left1.append(arr[i])
                left[index] -= 1
 
    right1 = []
 
    # Starting the right
    for i in range(index, len(right)):
        if (arr[index] > arr[i]):
 
            if (right[i] + 1 == right[index]):
                right1.append(arr[i])
                right[index] -= 1
 
    if (maxi < 3):
        print("-1")
 
    else:
 
        # Print the first left1 array
        # then the right array
        for i in range(len(left1) - 1, -1, -1):
            print(left1[i], end=" ")
 
        for i in range(0, len(right1)):
            print(right1[i], end=" ")
 
 
# Driver code
if __name__ == "__main__":
 
    arr = [9, 8, 1, 7, 6, 5, 4, 3, 2, 1]
    mountArray(arr)
 
    # This code is contributed by rakeshsahni

C#

// C# program for the above approach
using System;
using System.Collections;
class GFG {
 
  // Function to print the mountain array
  // after minimum removals
  static void mountArray(int []arr)
  {
    int N = arr.Length;
    int []left = new int[N];
    int []right = new int[N];
    for(int i = 0; i < N; i++) {
      left[i] = 1;
      right[i] = 1;
    }
 
    for (int i = 0; i < N; ++i) {
      for (int j = 0; j <= i; ++j) {
        if (arr[j] < arr[i]) {
 
          // This means the
          // previous number is
          // smaller than the number
          left[i] = Math.Max(left[j]
                             + 1,
                             left[i]);
        }
      }
    }
 
    // Find the longest decreasing sequence
    for (int i = N - 1; i >= 0; --i) {
      for (int j = i; j <= N - 1; ++j) {
        if (arr[j] < arr[i]) {
          right[i]
            = Math.Max(right[j]
                       + 1,
                       right[i]);
        }
      }
    }
    int max = 0;
    int index = 0;
    for (int i = 1; i < N - 1; ++i) {
      if (left[i] != 1
          && right[i] != 1) {
 
        if (max < (left[i]
                   + right[i])
            - 1) {
          index = i;
          max = (left[i]
                 + right[i])
            - 1;
        }
      }
    }
 
    // Print the longest continuous
    // subsequence from 0 to ith
    // and ith to N index
    ArrayList left1 = new ArrayList();
 
    left1.Add(arr[index]);
    for (int i = index; i >= 0; --i) {
      if (arr[i] < arr[index]) {
 
        // There is possibility
        // either the index is
        // used or not
        if (left[i] + 1 == left[index]) {
          left1.Add(arr[i]);
          left[index] -= 1;
        }
      }
    }
 
    ArrayList right1 = new ArrayList();
 
    // Starting the right
    for (int i = index; i
         < right.Length;
         ++i) {
      if (arr[index] > arr[i]) {
 
        if (right[i] + 1
            == right[index]) {
          right1.Add(arr[i]);
          right[index] -= 1;
        }
      }
    }
    if (max < 3) {
      Console.Write(-1);
    }
    else {
 
      // Print the first left1 array
      // then the right array
      for (int i = left1.Count - 1;
           i >= 0; --i) {
        Console.Write(left1[i]
                      + " ");
      }
      for (int i = 0; i < right1.Count;
           ++i) {
        Console.Write(right1[i]
                      + " ");
      }
    }
  }
 
  // Driver code
  public static void Main()
  {
    int []arr = { 9, 8, 1, 7, 6, 5, 4, 3, 2, 1 };
    mountArray(arr);
  }
}
 
// This code is contributed by Samim Hossain Mondal.

Javascript

<script>
     // JavaScript code for the above approach
 
     // Function to print the mountain array
     // after minimum removals
     function mountArray(arr) {
         let N = arr.length;
         let left = new Array(N).fill(1);
         let right = new Array(N).fill(1);
 
 
         for (let i = 0; i < N; ++i) {
             for (let j = 0; j <= i; ++j) {
                 if (arr[j] < arr[i]) {
 
                     // This means the
                     // previous number is
                     // smaller than the number
                     left[i] = Math.max(left[j]
                         + 1,
                         left[i]);
                 }
             }
         }
 
         // Find the longest decreasing sequence
         for (let i = N - 1; i >= 0; --i) {
             for (let j = i; j <= N - 1; ++j) {
                 if (arr[j] < arr[i]) {
                     right[i]
                         = Math.max(right[j]
                             + 1,
                             right[i]);
                 }
             }
         }
         let max = 0;
         let index = 0;
         for (let i = 1; i < N - 1; ++i) {
             if (left[i] != 1
                 && right[i] != 1) {
 
                 if (max < (left[i]
                     + right[i])
                     - 1) {
                     index = i;
                     max = (left[i]
                         + right[i])
                         - 1;
                 }
             }
         }
 
         // Print the longest continuous
         // subsequence from 0 to ith
         // and ith to N index
         let left1
             = [];
 
         left1.push(arr[index]);
         for (let i = index; i >= 0; --i) {
             if (arr[i] < arr[index]) {
 
                 // There is possibility
                 // either the index is
                 // used or not
                 if (left[i] + 1 == left[index]) {
                     left1.push(arr[i]);
                     left[index] -= 1;
                 }
             }
         }
 
         let right1
             = []
 
         // Starting the right
         for (let i = index; i
             < right.length;
             ++i) {
             if (arr[index] > arr[i]) {
 
                 if (right[i] + 1
                     == right[index]) {
                     right1.push(arr[i]);
                     right[index] -= 1;
                 }
             }
         }
         if (max < 3) {
             document.write(-1);
         }
         else {
 
             // Print the first left1 array
             // then the right array
             for (let i = left1.length - 1;
                 i >= 0; --i) {
                 document.write(left1[i]
                     + " ");
             }
             for (let i = 0; i < right1.length;
                 ++i) {
                 document.write(right1[i]
                     + " ");
             }
         }
     }
 
     // Driver code
     let arr = [9, 8, 1, 7, 6, 5, 4, 3, 2, 1];
     mountArray(arr);
 
    // This code is contributed by Potta Lokesh
 </script>
Producción

1 7 6 5 4 3 2 1 

Complejidad de Tiempo: O(N 2 )
Espacio Auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por zack_aayush y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *