Implementación del problema del viajante de comercio (TSP)

Problema del viajante de comercio (TSP): dado un conjunto de ciudades y distancias entre cada par de ciudades, el problema es encontrar la ruta más corta posible que visite cada ciudad exactamente una vez y regrese al punto de partida. 
Tenga en cuenta la diferencia entre el ciclo hamiltoniano y TSP. El problema del ciclo hamiltoniano es encontrar si existe un recorrido que visite cada ciudad exactamente una vez. Aquí sabemos que existe el recorrido hamiltoniano (porque el gráfico está completo) y, de hecho, existen muchos recorridos de este tipo, el problema es encontrar un ciclo hamiltoniano de peso mínimo. 
Por ejemplo, considere el gráfico que se muestra en la figura del lado derecho. Un recorrido TSP en el gráfico es 1-2-4-3-1. El costo del tour es 10+25+30+15 que son 80.
El problema es un famoso problema NP-difícil. No existe una solución conocida en tiempo polinomial para este problema. 
 

Ejemplos: 

Output of Given Graph:
minimum weight Hamiltonian Cycle :
10 + 25 + 30 + 15 := 80

En esta publicación, se analiza la implementación de una solución simple.

  1. Considere la ciudad 1 como el punto inicial y final. Dado que la ruta es cíclica, podemos considerar cualquier punto como punto de partida.
  2. ¡Genera todo (n-1)! permutaciones de ciudades.
  3. Calcule el costo de cada permutación y realice un seguimiento de la permutación de costo mínimo.
  4. Devolver la permutación con coste mínimo.

A continuación se muestra la implementación de la idea anterior. 

C++

// CPP program to implement traveling salesman
// problem using naive approach.
#include <bits/stdc++.h>
using namespace std;
#define V 4
 
// implementation of traveling Salesman Problem
int travllingSalesmanProblem(int graph[][V], int s)
{
    // store all vertex apart from source vertex
    vector<int> vertex;
    for (int i = 0; i < V; i++)
        if (i != s)
            vertex.push_back(i);
 
    // store minimum weight Hamiltonian Cycle.
    int min_path = INT_MAX;
    do {
 
        // store current Path weight(cost)
        int current_pathweight = 0;
 
        // compute current path weight
        int k = s;
        for (int i = 0; i < vertex.size(); i++) {
            current_pathweight += graph[k][vertex[i]];
            k = vertex[i];
        }
        current_pathweight += graph[k][s];
 
        // update minimum
        min_path = min(min_path, current_pathweight);
 
    } while (
        next_permutation(vertex.begin(), vertex.end()));
 
    return min_path;
}
 
// Driver Code
int main()
{
    // matrix representation of graph
    int graph[][V] = { { 0, 10, 15, 20 },
                       { 10, 0, 35, 25 },
                       { 15, 35, 0, 30 },
                       { 20, 25, 30, 0 } };
    int s = 0;
    cout << travllingSalesmanProblem(graph, s) << endl;
    return 0;
}

Java

// Java program to implement
// traveling salesman problem
// using naive approach.
import java.util.*;
class GFG{
     
static int V = 4;
 
// implementation of traveling
// Salesman Problem
static int travllingSalesmanProblem(int graph[][],
                                    int s)
{
  // store all vertex apart
  // from source vertex
  ArrayList<Integer> vertex =
            new ArrayList<Integer>();
   
  for (int i = 0; i < V; i++)
    if (i != s)
      vertex.add(i);
 
  // store minimum weight
  // Hamiltonian Cycle.
  int min_path = Integer.MAX_VALUE;
  do
  {
    // store current Path weight(cost)
    int current_pathweight = 0;
 
    // compute current path weight
    int k = s;
     
    for (int i = 0;
             i < vertex.size(); i++)
    {
      current_pathweight +=
              graph[k][vertex.get(i)];
      k = vertex.get(i);
    }
    current_pathweight += graph[k][s];
 
    // update minimum
    min_path = Math.min(min_path,
                        current_pathweight);
 
  } while (findNextPermutation(vertex));
 
  return min_path;
}
 
// Function to swap the data
// present in the left and right indices
public static ArrayList<Integer> swap(
              ArrayList<Integer> data,
              int left, int right)
{
  // Swap the data
  int temp = data.get(left);
  data.set(left, data.get(right));
  data.set(right, temp);
 
  // Return the updated array
  return data;
}
   
// Function to reverse the sub-array
// starting from left to the right
// both inclusive
public static ArrayList<Integer> reverse(
              ArrayList<Integer> data,
              int left, int right)
{
  // Reverse the sub-array
  while (left < right)
  {
    int temp = data.get(left);
    data.set(left++,
             data.get(right));
    data.set(right--, temp);
  }
 
  // Return the updated array
  return data;
}
   
// Function to find the next permutation
// of the given integer array
public static boolean findNextPermutation(
                      ArrayList<Integer> data)
{ 
  // If the given dataset is empty
  // or contains only one element
  // next_permutation is not possible
  if (data.size() <= 1)
    return false;
 
  int last = data.size() - 2;
 
  // find the longest non-increasing
  // suffix and find the pivot
  while (last >= 0)
  {
    if (data.get(last) <
        data.get(last + 1))
    {
      break;
    }
    last--;
  }
 
  // If there is no increasing pair
  // there is no higher order permutation
  if (last < 0)
    return false;
 
  int nextGreater = data.size() - 1;
 
  // Find the rightmost successor
  // to the pivot
  for (int i = data.size() - 1;
           i > last; i--) {
    if (data.get(i) >
        data.get(last))
    {
      nextGreater = i;
      break;
    }
  }
 
  // Swap the successor and
  // the pivot
  data = swap(data,
              nextGreater, last);
 
  // Reverse the suffix
  data = reverse(data, last + 1,
                 data.size() - 1);
 
  // Return true as the
  // next_permutation is done
  return true;
}
 
// Driver Code
public static void main(String args[])
{
  // matrix representation of graph
  int graph[][] = {{0, 10, 15, 20},
                   {10, 0, 35, 25},
                   {15, 35, 0, 30},
                   {20, 25, 30, 0}};
  int s = 0;
  System.out.println(
  travllingSalesmanProblem(graph, s));
}
}
 
// This code is contributed by adityapande88

Python3

# Python3 program to implement traveling salesman
# problem using naive approach.
from sys import maxsize
from itertools import permutations
V = 4
 
# implementation of traveling Salesman Problem
def travellingSalesmanProblem(graph, s):
 
    # store all vertex apart from source vertex
    vertex = []
    for i in range(V):
        if i != s:
            vertex.append(i)
 
    # store minimum weight Hamiltonian Cycle
    min_path = maxsize
    next_permutation=permutations(vertex)
    for i in next_permutation:
 
        # store current Path weight(cost)
        current_pathweight = 0
 
        # compute current path weight
        k = s
        for j in i:
            current_pathweight += graph[k][j]
            k = j
        current_pathweight += graph[k][s]
 
        # update minimum
        min_path = min(min_path, current_pathweight)
         
    return min_path
 
 
# Driver Code
if __name__ == "__main__":
 
    # matrix representation of graph
    graph = [[0, 10, 15, 20], [10, 0, 35, 25],
            [15, 35, 0, 30], [20, 25, 30, 0]]
    s = 0
    print(travellingSalesmanProblem(graph, s))

C#

// C# program to implement
// traveling salesman problem
// using naive approach.
using System;
using System.Collections.Generic;
 
class GFG {
 
    static int V = 4;
 
    // implementation of traveling Salesman Problem
    static int travllingSalesmanProblem(int[, ] graph,
                                        int s)
    {
        List<int> vertex = new List<int>();
 
        for (int i = 0; i < V; i++)
            if (i != s)
                vertex.Add(i);
 
        // store minimum weight
        // Hamiltonian Cycle.
        int min_path = Int32.MaxValue;
 
        do {
            // store current Path weight(cost)
            int current_pathweight = 0;
            int k = s;
 
            // compute current path weight
            for (int i = 0; i < vertex.Count; i++) {
                current_pathweight += graph[k, vertex[i]];
                k = vertex[i];
            }
 
            current_pathweight += graph[k, s];
 
            // update minimum
            min_path
                = Math.Min(min_path, current_pathweight);
 
        } while (findNextPermutation(vertex));
 
        return min_path;
    }
 
    // Function to swap the data resent in the left and
    // right indices
    public static List<int> swap(List<int> data, int left,
                                 int right)
    {
        // Swap the data
        int temp = data[left];
        data[left] = data[right];
        data[right] = temp;
 
        // Return the updated array
        return data;
    }
 
    // Function to reverse the sub-array starting from left
    // to the right both inclusive
    public static List<int> reverse(List<int> data,
                                    int left, int right)
    {
        // Reverse the sub-array
        while (left < right) {
            int temp = data[left];
            data[left++] = data[right];
            data[right--] = temp;
        }
 
        // Return the updated array
        return data;
    }
 
    // Function to find the next permutation of the given
    // integer array
    public static bool findNextPermutation(List<int> data)
    {
        // If the given dataset is empty
        // or contains only one element
        // next_permutation is not possible
        if (data.Count <= 1)
            return false;
        int last = data.Count - 2;
 
        // find the longest non-increasing
        // suffix and find the pivot
        while (last >= 0) {
            if (data[last] <  data[last + 1])
                break;
            last--;
        }
 
        // If there is no increasing pair
        // there is no higher order permutation
        if (last < 0)
            return false;
        int nextGreater = data.Count - 1;
 
        // Find the rightmost successor
        // to the pivot
        for (int i = data.Count - 1; i > last; i--) {
            if (data[i] >  data[last]) {
                nextGreater = i;
                break;
            }
        }
 
        // Swap the successor and
        // the pivot
        data = swap(data, nextGreater, last);
 
        // Reverse the suffix
        data = reverse(data, last + 1, data.Count - 1);
 
        // Return true as the
        // next_permutation is done
        return true;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        //   matrix representation of graph
        int[, ] graph
            = new int[4, 4] { { 0, 10, 15, 20 },
                              { 10, 0, 35, 25 },
                              { 15, 35, 0, 30 },
                              { 20, 25, 30, 45 } };
        int s = 0;
        Console.WriteLine(
            travllingSalesmanProblem(graph, s));
    }
}
 
// This code is contributed by Tapesh(tapeshdua420)
Producción

80

Publicación traducida automáticamente

Artículo escrito por Nishant_Singh y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *