Dado un número N, imprime el siguiente patrón.
Ejemplos:
Input : 4 Output : 4444444 4333334 4322234 4321234 4322234 4333334 4444444 Explanation: (1) Given value of n forms the outer-most rectangular box layer. (2) Value of n reduces by 1 and forms an inner rectangular box layer. (3) The step (2) is repeated until n reduces to 1. Input : 3 Output : 33333 32223 32123 32223 33333
C++
// C++ Program to print rectangular // inner reducing pattern #include <bits/stdc++.h> using namespace std; #define max 100 // function to Print pattern void print(int a[][max], int size) { for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { cout << a[i][j]; } cout << endl; } } // function to compute pattern void innerPattern(int n) { // Pattern Size int size = 2 * n - 1; int front = 0; int back = size - 1; int a[max][max]; while (n != 0) { for (int i = front; i <= back; i++) { for (int j = front; j <= back; j++) { if (i == front || i == back || j == front || j == back) a[i][j] = n; } } ++front; --back; --n; } print(a, size); } // Driver code int main() { // Input int n = 4; // function calling innerPattern(n); return 0; } // This code is contributed by Anant Agarwal.
Java
// Java Program to print rectangular // inner reducing pattern public class Pattern { // function to compute pattern public static void innerPattern(int n) { // Pattern Size int size = 2 * n - 1; int front = 0; int back = size - 1; int a[][] = new int[size][size]; while (n != 0) { for (int i = front; i <= back; i++) { for (int j = front; j <= back; j++) { if (i == front || i == back || j == front || j == back) a[i][j] = n; } } ++front; --back; --n; } print(a, size); } // function to Print pattern public static void print(int a[][], int size) { for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { System.out.print(a[i][j]); } System.out.println(); } } // Main Method public static void main(String[] args) { int n = 4; // Input innerPattern(n); } }
Python3
# Python3 Program to print rectangular # inner reducing pattern MAX = 100 # function to Print pattern def prints(a, size): for i in range(size): for j in range(size): print(a[i][j], end = '') print() # function to compute pattern def innerPattern(n): # Pattern Size size = 2 * n - 1 front = 0 back = size - 1 a = [[0 for i in range(MAX)] for i in range(MAX)] while (n != 0): for i in range(front, back + 1): for j in range(front, back + 1): if (i == front or i == back or j == front or j == back): a[i][j] = n front += 1 back -= 1 n -= 1 prints(a, size); # Driver code # Input n = 4 # function calling innerPattern(n) # This code is contributed # by sahishelangia
C#
// C# Program to print rectangular // inner reducing pattern using System; public class Pattern { // function to compute pattern public static void innerPattern(int n) { // Pattern Size int size = 2 * n - 1; int front = 0; int back = size - 1; int [ ,]a = new int[size,size]; while (n != 0) { for (int i = front; i <= back; i++) { for (int j = front; j <= back; j++) { if (i == front || i == back || j == front || j == back) a[i,j] = n; } } ++front; --back; --n; } print(a, size); } // function to Print pattern public static void print(int [ ,]a , int size) { for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { Console.Write(a[i,j]); } Console.WriteLine(); } } // Main Method public static void Main() { int n = 4; // Input innerPattern(n); } } /*This code is contributed by vt_m.*/
PHP
<?php // PHP implementation to print // rectangular inner reducing pattern $max=100; // function to Print pattern function print1($a, $size) { for ($i = 0; $i < $size; $i++) { for ($j = 0; $j < $size; $j++) { echo $a[$i][$j]; } echo "\n"; } } // function to compute pattern function innerPattern($n) { // Pattern Size $size = 2 * $n - 1; $front = 0; $back = $size - 1; $a; while ($n != 0) { for ($i = $front; $i <= $back; $i++) { for ($j = $front; $j <= $back; $j++) { if ($i == $front || $i == $back || $j == $front || $j == $back) $a[$i][$j] = $n; } } ++$front; --$back; --$n; } print1($a, $size); } // Driver code $n = 4; innerPattern($n); // This code is contributed by mits ?>
Producción :
4444444 4333334 4322234 4321234 4322234 4333334 4444444
Este artículo es una contribución de Vigneshwaran Kannan . Si le gusta GeeksforGeeks y le gustaría contribuir, también puede escribir un artículo usando contribuya.geeksforgeeks.org o envíe su artículo por correo a contribuya@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA