Imprima niveles actualizados de cada Node de un árbol binario completo en función de la diferencia en los pesos de los subárboles

Dado un árbol binario completo con N niveles numerados [0, (N – 1)] desde la raíz hasta el nivel más bajo en orden decreciente y con pesos numerados entre [1, 2 N – 1] desde la raíz hasta el último Node hoja en el En orden creciente, la tarea de cada Node es ajustar los valores de los niveles de todos los Nodes presentes en su subárbol izquierdo y derecho en función de la siguiente condición: 

  • Aumenta el nivel de todos los Nodes del subárbol más ligero por la diferencia de sus pesos.
  • Disminuya el nivel de todos los Nodes del subárbol más pesado por la diferencia de sus pesos.

Ejemplos: 

Aporte: 

          1
        /   \
       2     3

Salida: 0 0 -2 
Explicación: 
Los niveles iniciales de los Nodes {1,2,3} son {0,-1,-1} respectivamente. 
El Node raíz permanece sin cambios. 
El peso del subárbol izquierdo es 2 y el peso del subárbol derecho es 3. 
Entonces, el subárbol izquierdo sube por (3 – 2) = 1 nivel a 0. 
El subárbol derecho baja por 1 nivel a -2.
Aporte: 
 

             1
           /   \
          2     3
         / \   / \
        4   5 6   7

Salida: 0 4 -6 4 2 -6 -8 
Explicación: 
Los niveles iniciales de los Nodes {1,2,3,4,5,6,7} son {0,-1,-1,-2,-2 ,-2,-2} respectivamente. 
El Node raíz permanece sin cambios. 
El peso del subárbol izquierdo {2,4,5} es 11. 
El peso del subárbol derecho {3,6,7} es 16. 
Por lo tanto, todos los Nodes del subárbol izquierdo suben 5 mientras que los del subárbol derecho se mueve hacia abajo en 5. 
Así, los nuevos niveles de cada Node son: 
Node 2: -1 + 5 = 4 
Node 3: -1 – 5 = -6 
Node 4,5: -2 + 5 = 3 
Node 6,7: -2 – 5 = -7 
Ahora, los Nodes 4,5 se basan además en la diferencia de sus pesos (5 -4 ) = 1. 
Node 4: 3 + 1 = 4 
Node 5: 3 – 1 = 2 
Del mismo modo, los Nodes 6, 7 también se ajustan. 
Node 6: -7 + 1 = -6 
Node 7: -7 – 1 = -8 
Por lo tanto, los niveles ajustados finales de todos los Nodes son 0 4 -6 4 2 -6 -8. 

Enfoque: para resolver este problema, calculamos los pesos de los subárboles izquierdo (w_left) y derecho (w_right) para cada Node y almacenamos su diferencia K . Una vez calculado, aumentamos recursivamente el valor del nivel de todos los Nodes de su subárbol más ligero en K y disminuimos el de su subárbol más pesado en K a partir de sus respectivos valores actuales. Una vez calculados para todos los Nodes, mostramos los valores finales del nivel de cada Node.
El siguiente código es la implementación del enfoque anterior:

C++

// C++ Program to print updated levels
// of each node of a Complete Binary Tree
// based on difference in weights of subtrees
 
#include <bits/stdc++.h>
using namespace std;
 
// Node for the given binary tree
struct node {
 
    int weight;
 
    // stores the weight of node
    int level;
 
    // stores the level of node
    struct node* left;
    struct node* right;
 
    node(int w, int l)
    {
        this->weight = w;
        this->level = l;
        left = right = NULL;
    }
};
 
// Utility function to insert a node
// in a tree rooted at root
struct node* insert(struct node* root,
 int n_weight,
int n_level, queue<node*>& q)
{
 
    struct node* n
= new node(n_weight, n_level);
 
    // if the tree is empty till now
    // make node n the root
    if (root == NULL)
        root = n;
 
    // If the frontmost node of
    // queue has no left child
    // make node n its left child
    // the frontmost node still
    // remains in the queue because
    // its right child is null yet
    else if (q.front()->left == NULL) {
        q.front()->left = n;
    }
 
    // Make node n the right child of
    // the frontmost node and remove
    // the front node from queue
    else {
        q.front()->right = n;
        q.pop();
    }
    // push the node n into queue
    q.push(n);
 
    return root;
}
 
// Function to create a complete binary tree
struct node* createTree(vector<int> weights,
vector<int> levels)
{
 
    // initialise the root node of tree
    struct node* root = NULL;
 
    // initialise a queue of nodes
    queue<node*> q;
 
    int n = weights.size();
    for (int i = 0; i < n; i++) {
 
        /*
        keep inserting nodes with weight values
        from the weights vector and level values
        from the levels vector
        */
        root = insert(root, weights[i],
        levels[i], q);
    }
    return root;
}
 
// Function to print final levels of nodes
void printNodeLevels(struct node* root)
{
 
    if (root == NULL)
        return;
 
    queue<node*> q;
    q.push(root);
 
    while (!q.empty()) {
 
        cout << q.front()->level << " ";
 
        if (q.front()->left != NULL)
            q.push(q.front()->left);
        if (q.front()->right != NULL)
            q.push(q.front()->right);
        q.pop();
    }
    cout << endl;
}
 
// Function to find the weight of subtree
int findWeight(struct node* root)
{
    // If the root node is null
    // then weight of subtree will be 0
    if (root == NULL)
        return 0;
     
    return root->weight +
        findWeight(root->left)
        + findWeight(root->right);
}
 
// Function to compute new level
// of the nodes based on the
// difference of weight K
void changeLevels(struct node* root, int k)
{
 
    if (root == NULL)
        return;
     
    // Change the level of root node
    root->level = root->level + k;
 
    // Recursively change the level of
    // left and right subtree
    changeLevels(root->left, k);
    changeLevels(root->right, k);
}
 
// Function to calculate weight of
// the left and the right subtrees and
// adjust levels based on their difference
void adjustLevels(struct node* root)
{
 
    // No adjustment required
    // when root is null
    if (root == NULL)
        return;
 
    // Find weights of left
    // and right subtrees
    int w_left = findWeight(root->left);
    int w_right = findWeight(root->right);
 
    // find the difference between the
    // weights of left and right subtree
    int w_diff = w_left - w_right;
 
    // Change the levels of nodes
    // according to weight difference at root
    changeLevels(root->left, -w_diff);
    changeLevels(root->right, w_diff);
 
    // Recursively adjust the levels
    // for left and right subtrees
    adjustLevels(root->left);
    adjustLevels(root->right);
}
 
// Driver code
int main()
{
    // Number of levels
    int N = 3;
 
    // Number of nodes
    int nodes = pow(2, N) - 1;
 
    vector<int> weights;
    // Vector to store weights of tree nodes
    for (int i = 1; i <= nodes; i++) {
        weights.push_back(i);
    }
     
    vector<int> levels;
    // Vector to store levels of every nodes
    for (int i = 0; i < N; i++) {
 
        // 2^i nodes are present at ith level
        for (int j = 0; j < pow(2, i); j++) {
 
            // value of level becomes negative
            // while going down the root
            levels.push_back(-1 * i);
        }
    }
     
    // Create tree with the
// given weights and levels
    struct node* root
= createTree(weights, levels);
     
    // Adjust the levels
    adjustLevels(root);
     
    // Display the final levels
    printNodeLevels(root);
     
    return 0;
}

Java

// Java Program to print updated levels
// of each node of a Complete Binary Tree
// based on difference in weights of subtrees
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Queue;
 
class GFG {
 
    // Node for the given binary tree
    static class node {
 
        int weight;
 
        // stores the weight of node
        int level;
 
        // stores the level of node
        node left;
        node right;
        public node(int w, int l)
        {
            this.weight = w;
            this.level = l;
            left = right = null;
        }
    }
 
    // Utility function to insert a node
    // in a tree rooted at root
    static node insert(node root, int n_weight, int n_level, Queue<node> q)
    {
        node n = new node(n_weight, n_level);
 
        // if the tree is empty till now
        // make node n the root
        if (root == null)
            root = n;
 
        // If the frontmost node of
        // queue has no left child
        // make node n its left child
        // the frontmost node still
        // remains in the queue because
        // its right child isnull yet
        else if (q.peek().left == null)
        {
            q.peek().left = n;
        }
 
        // Make node n the right child of
        // the frontmost node and remove
        // the front node from queue
        else
        {
            q.peek().right = n;
            q.poll();
        }
       
        // push the node n into queue
        q.add(n);
 
        return root;
    }
 
    // Function to create a complete binary tree
    static node createTree(ArrayList<Integer> weights,
                           ArrayList<Integer> levels)
    {
 
        // initialise the root node of tree
        node root = null;
 
        // initialise a queue of nodes
        Queue<node> q = new LinkedList<>();
        int n = weights.size();
        for (int i = 0; i < n; i++)
        {
 
            /*
             * keep inserting nodes with weight values
             * from the weights vector and level
             * values from the levels vector
             */
            root = insert(root, weights.get(i), levels.get(i), q);
        }
        return root;
    }
 
    // Function to print final levels of nodes
    static void printNodeLevels(node root)
    {
 
        if (root == null)
            return;
 
        Queue<node> q = new LinkedList<>();
        q.add(root);
 
        while (!q.isEmpty()) {
            System.out.print(q.peek().level + " ");
 
            if (q.peek().left != null)
                q.add(q.peek().left);
            if (q.peek().right != null)
                q.add(q.peek().right);
            q.poll();
        }
        System.out.println();
    }
 
    // Function to find the weight of subtree
    static int findWeight(node root)
    {
 
        // If the root node isnull
        // then weight of subtree will be 0
        if (root == null)
            return 0;
 
        return root.weight + findWeight(root.left) + findWeight(root.right);
    }
 
    // Function to compute new level
    // of the nodes based on the
    // difference of weight K
    static void changeLevels(node root, int k)
    {
        if (root == null)
            return;
 
        // Change the level of root node
        root.level = root.level + k;
 
        // Recursively change the level of
        // left and right subtree
        changeLevels(root.left, k);
        changeLevels(root.right, k);
    }
 
    // Function to calculate weight of
    // the left and the right subtrees and
    // adjust levels based on their difference
    static void adjustLevels(node root)
    {
 
        // No adjustment required
        // when root isnull
        if (root == null)
            return;
 
        // Find weights of left
        // and right subtrees
        int w_left = findWeight(root.left);
        int w_right = findWeight(root.right);
 
        // find the difference between the
        // weights of left and right subtree
        int w_diff = w_left - w_right;
 
        // Change the levels of nodes
        // according to weight difference at root
        changeLevels(root.left, -w_diff);
        changeLevels(root.right, w_diff);
 
        // Recursively adjust the levels
        // for left and right subtrees
        adjustLevels(root.left);
        adjustLevels(root.right);
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        // Number of levels
        int N = 3;
 
        // Number of nodes
        int nodes = (int) Math.pow(2, N) - 1;
 
        // Vector to store weights of tree nodes
        ArrayList<Integer> weights = new ArrayList<>();
        for (int i = 1; i <= nodes; i++) {
            weights.add(i);
        }
 
        // Vector to store levels of every nodes
        ArrayList<Integer> levels = new ArrayList<>();
        for (int i = 0; i < N; i++) {
 
            // 2^i nodes are present at ith level
            for (int j = 0; j < (int) Math.pow(2, i); j++) {
 
                // value of level becomes negative
                // while going down the root
                levels.add(-1 * i);
            }
        }
 
        // Create tree with the
        // given weights and levels
        node root = createTree(weights, levels);
 
        // Adjust the levels
        adjustLevels(root);
 
        // Display the final levels
        printNodeLevels(root);
 
    }
}
 
// This code is contributed by sanjeev2552

Python3

# Python3 Program to print
# updated levels of each
# node of a Complete Binary
# Tree based on difference
# in weights of subtrees
import math
 
# Node for the given binary
# tree
class node:
     
    def __init__(self, w, l):
         
        self.weight = w
        self.level = l
        self.left = None
        self.right = None
  
# Utility function to insert
# a node in a tree rooted at
# root
def insert(root, n_weight,
           n_level, q):
  
    n = node(n_weight,
             n_level);
  
    # if the tree is empty
    # till now make node n
    # the root
    if (root == None):
        root = n;
  
    # If the frontmost node of
    # queue has no left child
    # make node n its left child
    # the frontmost node still
    # remains in the queue because
    # its right child is null yet
    elif (q[0].left == None):
        q[0].left = n;
     
  
    # Make node n the right
    # child of the frontmost
    # node and remove the
    # front node from queue
    else:
        q[0].right = n;
        q.pop(0);
     
    # push the node n
    # into queue
    q.append(n);
  
    return root;
 
# Function to create a
# complete binary tree
def createTree(weights,
               levels):
  
    # initialise the root
    # node of tree
    root = None;
  
    # initialise a queue
    # of nodes
    q = []
  
    n = len(weights)
     
    for i in range(n):
        '''
        keep inserting nodes with
        weight values from the weights
        vector and level values from
        the levels vector
        '''       
        root = insert(root, weights[i],
                      levels[i], q);
         
    return root;
 
# Function to print final
# levels of nodes
def printNodeLevels(root):
  
    if (root == None):
        return;
  
    q = []
    q.append(root);
  
    while (len(q) != 0):       
        print(q[0].level,
              end = ' ')
        if (q[0].left != None):
            q.append(q[0].left);
        if (q[0].right != None):
            q.append(q[0].right);
        q.pop(0);
    print()
     
# Function to find the weight
# of subtree
def findWeight(root):
 
    # If the root node is
    # null then weight of
    # subtree will be 0
    if (root == None):
        return 0;
      
    return (root.weight +
            findWeight(root.left) +
            findWeight(root.right));
  
# Function to compute new level
# of the nodes based on the
# difference of weight K
def changeLevels(root, k):
  
    if (root == None):
        return;
      
    # Change the level of
    # root node
    root.level = root.level + k;
  
    # Recursively change the
    # level of left and right
    # subtree
    changeLevels(root.left, k);
    changeLevels(root.right, k);
 
# Function to calculate weight
# of the left and the right
# subtrees and adjust levels
# based on their difference
def adjustLevels(root):
  
    # No adjustment required
    # when root is null
    if (root == None):
        return;
  
    # Find weights of left
    # and right subtrees
    w_left = findWeight(root.left);
    w_right = findWeight(root.right);
  
    # find the difference between
    # the weights of left and
    # right subtree
    w_diff = w_left - w_right;
  
    # Change the levels of nodes
    # according to weight difference
    # at root
    changeLevels(root.left,
                 -w_diff);
    changeLevels(root.right,
                 w_diff);
  
    # Recursively adjust the levels
    # for left and right subtrees
    adjustLevels(root.left);
    adjustLevels(root.right);
 
# Driver code
if __name__=="__main__":
     
    # Number of levels
    N = 3;
  
    # Number of nodes
    nodes = int(math.pow(2, N)) - 1;
  
    weights = []
     
    # Vector to store weights
    # of tree nodes
    for i in range(1, nodes + 1):   
        weights.append(i);   
      
    levels = []
     
    # Vector to store levels
    # of every nodes
    for i in range(N):
         
        # 2^i nodes are present
        # at ith level
        for j in range(pow(2, i)):
             
            # value of level becomes
            # negative while going
            # down the root
            levels.append(-1 * i);               
      
    # Create tree with the
    # given weights and levels
    root = createTree(weights,
                      levels);
      
    # Adjust the levels
    adjustLevels(root);
      
    # Display the final levels
    printNodeLevels(root);
  
# This code is contributed by Rutvik_56

C#

// C# Program to print updated levels
// of each node of a Complete Binary Tree
// based on difference in weights of subtrees
using System;
using System.Collections.Generic;
class GFG {
     
    // Node for the given binary tree
    class node {
        
        public int weight, level;
        public node left, right;
        
        public node(int w, int l)
        {
            this.weight = w;
            this.level = l;
            left = right = null;
        }
    }
     
    // Utility function to insert a node
    // in a tree rooted at root
    static node insert(node root, int n_weight, int n_level, List<node> q)
    {
        node n = new node(n_weight, n_level);
  
        // if the tree is empty till now
        // make node n the root
        if (root == null)
            root = n;
  
        // If the frontmost node of
        // queue has no left child
        // make node n its left child
        // the frontmost node still
        // remains in the queue because
        // its right child isnull yet
        else if (q[0].left == null)
        {
            q[0].left = n;
        }
  
        // Make node n the right child of
        // the frontmost node and remove
        // the front node from queue
        else
        {
            q[0].right = n;
            q.RemoveAt(0);
        }
        
        // push the node n into queue
        q.Add(n);
  
        return root;
    }
  
    // Function to create a complete binary tree
    static node createTree(List<int> weights, List<int> levels)
    {
  
        // initialise the root node of tree
        node root = null;
  
        // initialise a queue of nodes
        List<node> q = new List<node>();
        int n = weights.Count;
        for (int i = 0; i < n; i++)
        {
  
            /*
             * keep inserting nodes with weight values
             * from the weights vector and level
             * values from the levels vector
             */
            root = insert(root, weights[i], levels[i], q);
        }
        return root;
    }
  
    // Function to print final levels of nodes
    static void printNodeLevels(node root)
    {
  
        if (root == null)
            return;
  
        List<node> q = new List<node>();
        q.Add(root);
  
        while (q.Count > 0) {
            Console.Write(q[0].level + " ");
  
            if (q[0].left != null)
                q.Add(q[0].left);
            if (q[0].right != null)
                q.Add(q[0].right);
            q.RemoveAt(0);
        }
        Console.WriteLine();
    }
  
    // Function to find the weight of subtree
    static int findWeight(node root)
    {
  
        // If the root node isnull
        // then weight of subtree will be 0
        if (root == null)
            return 0;
  
        return root.weight + findWeight(root.left) + findWeight(root.right);
    }
  
    // Function to compute new level
    // of the nodes based on the
    // difference of weight K
    static void changeLevels(node root, int k)
    {
        if (root == null)
            return;
  
        // Change the level of root node
        root.level = root.level + k;
  
        // Recursively change the level of
        // left and right subtree
        changeLevels(root.left, k);
        changeLevels(root.right, k);
    }
  
    // Function to calculate weight of
    // the left and the right subtrees and
    // adjust levels based on their difference
    static void adjustLevels(node root)
    {
  
        // No adjustment required
        // when root isnull
        if (root == null)
            return;
  
        // Find weights of left
        // and right subtrees
        int w_left = findWeight(root.left);
        int w_right = findWeight(root.right);
  
        // find the difference between the
        // weights of left and right subtree
        int w_diff = w_left - w_right;
  
        // Change the levels of nodes
        // according to weight difference at root
        changeLevels(root.left, -w_diff);
        changeLevels(root.right, w_diff);
  
        // Recursively adjust the levels
        // for left and right subtrees
        adjustLevels(root.left);
        adjustLevels(root.right);
    }
     
  static void Main() {
    // Number of levels
    int N = 3;
 
    // Number of nodes
    int nodes = (int) Math.Pow(2, N) - 1;
 
    // Vector to store weights of tree nodes
    List<int> weights = new List<int>();
    for (int i = 1; i <= nodes; i++) {
        weights.Add(i);
    }
 
    // Vector to store levels of every nodes
    List<int> levels = new List<int>();
    for (int i = 0; i < N; i++) {
 
        // 2^i nodes are present at ith level
        for (int j = 0; j < (int) Math.Pow(2, i); j++) {
 
            // value of level becomes negative
            // while going down the root
            levels.Add(-1 * i);
        }
    }
 
    // Create tree with the
    // given weights and levels
    node root = createTree(weights, levels);
 
    // Adjust the levels
    adjustLevels(root);
 
    // Display the final levels
    printNodeLevels(root);
  }
}
 
// This code is contributed by suresh07.

Javascript

<script>
 
    // JavaScript Program to print updated levels
    // of each node of a Complete Binary Tree
    // based on difference in weights of subtrees
     
    // Node for the given binary tree
    class node {
        constructor(w, l) {
           this.left = null;
           this.right = null;
           this.weight = w;
           this.level = l;
        }
    }
  
    // Utility function to insert a node
    // in a tree rooted at root
    function insert(root, n_weight, n_level, q)
    {
        let n = new node(n_weight, n_level);
  
        // if the tree is empty till now
        // make node n the root
        if (root == null)
            root = n;
  
        // If the frontmost node of
        // queue has no left child
        // make node n its left child
        // the frontmost node still
        // remains in the queue because
        // its right child isnull yet
        else if (q[0].left == null)
        {
            q[0].left = n;
        }
  
        // Make node n the right child of
        // the frontmost node and remove
        // the front node from queue
        else
        {
            q[0].right = n;
            q.shift();
        }
        
        // push the node n into queue
        q.push(n);
  
        return root;
    }
  
    // Function to create a complete binary tree
    function createTree(weights, levels)
    {
  
        // initialise the root node of tree
        let root = null;
  
        // initialise a queue of nodes
        let q = [];
        let n = weights.length;
        for (let i = 0; i < n; i++)
        {
  
            /*
             * keep inserting nodes with weight values
             * from the weights vector and level
             * values from the levels vector
             */
            root = insert(root, weights[i], levels[i], q);
        }
        return root;
    }
  
    // Function to print final levels of nodes
    function printNodeLevels(root)
    {
  
        if (root == null)
            return;
  
        let q = [];
        q.push(root);
  
        while (q.length > 0) {
            document.write(q[0].level + " ");
  
            if (q[0].left != null)
                q.push(q[0].left);
            if (q[0].right != null)
                q.push(q[0].right);
            q.shift();
        }
        document.write("</br>");
    }
  
    // Function to find the weight of subtree
    function findWeight(root)
    {
  
        // If the root node isnull
        // then weight of subtree will be 0
        if (root == null)
            return 0;
  
        return root.weight + findWeight(root.left) +
        findWeight(root.right);
    }
  
    // Function to compute new level
    // of the nodes based on the
    // difference of weight K
    function changeLevels(root, k)
    {
        if (root == null)
            return;
  
        // Change the level of root node
        root.level = root.level + k;
  
        // Recursively change the level of
        // left and right subtree
        changeLevels(root.left, k);
        changeLevels(root.right, k);
    }
  
    // Function to calculate weight of
    // the left and the right subtrees and
    // adjust levels based on their difference
    function adjustLevels(root)
    {
  
        // No adjustment required
        // when root isnull
        if (root == null)
            return;
  
        // Find weights of left
        // and right subtrees
        let w_left = findWeight(root.left);
        let w_right = findWeight(root.right);
  
        // find the difference between the
        // weights of left and right subtree
        let w_diff = w_left - w_right;
  
        // Change the levels of nodes
        // according to weight difference at root
        changeLevels(root.left, -w_diff);
        changeLevels(root.right, w_diff);
  
        // Recursively adjust the levels
        // for left and right subtrees
        adjustLevels(root.left);
        adjustLevels(root.right);
    }
     
    // Number of levels
    let N = 3;
 
    // Number of nodes
    let nodes = Math.pow(2, N) - 1;
 
    // Vector to store weights of tree nodes
    let weights = [];
    for (let i = 1; i <= nodes; i++) {
      weights.push(i);
    }
 
    // Vector to store levels of every nodes
    let levels = [];
    for (let i = 0; i < N; i++) {
 
      // 2^i nodes are present at ith level
      for (let j = 0; j < Math.pow(2, i); j++) {
 
        // value of level becomes negative
        // while going down the root
        levels.push(-1 * i);
      }
    }
 
    // Create tree with the
    // given weights and levels
    let root = createTree(weights, levels);
 
    // Adjust the levels
    adjustLevels(root);
 
    // Display the final levels
    printNodeLevels(root);
     
</script>
Producción: 

0 4 -6 4 2 -6 -8

 

Complejidad de tiempo: O(N), donde N es el número total de Nodes en el árbol. 
Espacio Auxiliar: O(N) 

Publicación traducida automáticamente

Artículo escrito por nishita300601 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *