Imprimir todos los niveles principales de un árbol binario

Dado un árbol binario , la tarea es imprimir todos los niveles principales de este árbol. 

Se dice que cualquier nivel de un árbol binario es un nivel primo , si todos los Nodes de este nivel son primos.

Ejemplos: 

Input: 
                 1
                /  \ 
              15    13 
             /     /   \ 
            11    7     29 
                   \    / 
                   2   3  
Output: 11 7 29
         2 3
Explanation: 
Third and Fourth levels are prime levels.

Input:
                  7
                /  \ 
              23     41 
             /  \      \
            31   16     3 
           / \     \    / 
          2   5    17  11    
                   /
                  23 
Output: 7
         23 41
         2 5 17 11
         23
Explanation: 
First, Second, Fourth and 
Fifth levels are prime levels.

Enfoque: para verificar si un nivel es Prime o no, 

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program for printing a prime
// levels of binary Tree
 
#include <bits/stdc++.h>
using namespace std;
 
// A Tree node
struct Node {
    int key;
    struct Node *left, *right;
};
 
// Utility function to create a new node
Node* newNode(int key)
{
    Node* temp = new Node;
    temp->key = key;
    temp->left = temp->right = NULL;
    return (temp);
}
 
// Function to check whether node
// Value is prime or not
bool isPrime(int n)
{
    if (n == 1)
        return false;
 
    // Iterate from 2 to sqrt(n)
    for (int i = 2; i * i <= n; i++) {
 
        // If it has a factor
        if (n % i == 0) {
            return false;
        }
    }
 
    return true;
}
 
// Function to print a Prime level
void printLevel(struct Node* queue[],
                int index, int size)
{
    for (int i = index; i < size; i++) {
        cout << queue[i]->key << " ";
    }
 
    cout << endl;
}
 
// Function to check whether given level is
// prime level or not
bool isLevelPrime(struct Node* queue[],
                  int index, int size)
{
    for (int i = index; i < size; i++) {
        // Check value of node is
        // pPrime or not
        if (!isPrime(queue[index++]->key)) {
            return false;
        }
    }
 
    // Return true if for loop
    // iIterate completely
    return true;
}
 
// Utility function to get Prime
// Level of a given Binary tree
void findPrimeLevels(struct Node* node,
                     struct Node* queue[],
                     int index, int size)
{
    // Print root node value, if Prime
    if (isPrime(queue[index]->key)) {
        cout << queue[index]->key << endl;
    }
 
    // Run while loop
    while (index < size) {
        int curr_size = size;
 
        // Run inner while loop
        while (index < curr_size) {
            struct Node* temp = queue[index];
 
            // Push left child in a queue
            if (temp->left != NULL)
                queue[size++] = temp->left;
 
            // Push right child in a queue
            if (temp->right != NULL)
                queue[size++] = temp->right;
 
            // Increment index
            index++;
        }
 
        // If condition to check, level is
        // prime or not
        if (isLevelPrime(
                queue, index, size - 1)) {
 
            // Function call to print
            // prime level
            printLevel(queue, index, size);
        }
    }
}
 
// Function to find total no of nodes
// In a given binary tree
int findSize(struct Node* node)
{
    // Base condition
    if (node == NULL)
        return 0;
 
    return 1
           + findSize(node->left)
           + findSize(node->right);
}
 
// Function to find Prime levels
// In a given binary tree
void printPrimeLevels(struct Node* node)
{
    int t_size = findSize(node);
 
    // Create queue
    struct Node* queue[t_size];
 
    // Push root node in a queue
    queue[0] = node;
 
    // Function call
    findPrimeLevels(node, queue, 0, 1);
}
 
// Driver Code
int main()
{
    /*      10
         /    \
        13     11
            /  \
           19    23
          / \    / \
         21 29 43 15
                  /
                 7 */
 
    // Create Binary Tree as shown
 
    Node* root = newNode(10);
    root->left = newNode(13);
    root->right = newNode(11);
 
    root->right->left = newNode(19);
    root->right->right = newNode(23);
 
    root->right->left->left = newNode(21);
    root->right->left->right = newNode(29);
    root->right->right->left = newNode(43);
    root->right->right->right = newNode(15);
    root->right->right->right->left = newNode(7);
 
    // Print Prime Levels
    printPrimeLevels(root);
 
    return 0;
}

Java

// Java program for the above approach
public class Main
{
    // A Tree node
    static class Node {
         
        public int key;
        public Node left, right;
         
        public Node(int key)
        {
            this.key = key;
            left = right = null;
        }
    }
     
    // Utility function to create a new node
    static Node newNode(int key)
    {
        Node temp = new Node(key);
        return temp;
    }
       
    // Function to check whether node
    // Value is prime or not
    static boolean isPrime(int n)
    {
        if (n == 1)
            return false;
       
        // Iterate from 2 to sqrt(n)
        for(int i = 2; i * i <= n; i++)
        {
               
            // If it has a factor
            if (n % i == 0)
            {
                return false;
            }
        }
        return true;
    }
       
    // Function to print a Prime level
    static void printLevel(Node[] queue, int index, int size)
    {
        for(int i = index; i < size; i++)
        {
            System.out.print(queue[i].key + " ");
        }
        System.out.println();
    }
       
    // Function to check whether given level is
    // prime level or not
    static boolean isLevelPrime(Node[] queue, int index, int size)
    {
        for(int i = index; i < size; i++)
        {
               
            // Check value of node is
            // pPrime or not
            if (!isPrime(queue[index++].key))
            {
                return false;
            }
        }
           
        // Return true if for loop
        // iIterate completely
        return true;
    }
       
    // Utility function to get Prime
    // Level of a given Binary tree
    static void findPrimeLevels(Node node, Node[] queue, int index, int size)
    {
           
        // Print root node value, if Prime
        if (isPrime(queue[index].key))
        {
            System.out.println(queue[index].key);
        }
       
        // Run while loop
        while (index < size)
        {
            int curr_size = size;
       
            // Run inner while loop
            while (index < curr_size)
            {
                Node temp = queue[index];
       
                // Push left child in a queue
                if (temp.left != null)
                    queue[size++] = temp.left;
       
                // Push right child in a queue
                if (temp.right != null)
                    queue[size++] = temp.right;
       
                // Increment index
                index++;
            }
       
            // If condition to check, level is
            // prime or not
            if (isLevelPrime(queue, index, size - 1))
            {
                   
                // Function call to print
                // prime level
                printLevel(queue, index, size);
            }
        }
    }
       
    // Function to find total no of nodes
    // In a given binary tree
    static int findSize(Node node)
    {
           
        // Base condition
        if (node == null)
            return 0;
       
        return 1 + findSize(node.left) +
                   findSize(node.right);
    }
       
    // Function to find Prime levels
    // In a given binary tree
    static void printPrimeLevels(Node node)
    {
        int t_size = findSize(node);
       
        // Create queue
        Node[] queue = new Node[t_size];
        for(int i = 0; i < t_size; i++)
        {
            queue[i] = new Node(0);
        }
       
        // Push root node in a queue
        queue[0] = node;
       
        // Function call
        findPrimeLevels(node, queue, 0, 1);
    }
     
    public static void main(String[] args) {
        /*     10
             /    \
            13     11
                  /  \
                19    23
               / \    / \
              21 29 43 15
                      /
                     7 */
           
        // Create Binary Tree as shown
        Node root = newNode(10);
        root.left = newNode(13);
        root.right = newNode(11);
           
        root.right.left = newNode(19);
        root.right.right = newNode(23);
           
        root.right.left.left = newNode(21);
        root.right.left.right = newNode(29);
        root.right.right.left = newNode(43);
        root.right.right.right = newNode(15);
        root.right.right.right.left = newNode(7);
           
        // Print Prime Levels
        printPrimeLevels(root);
    }
}
 
// This code is contributed by suresh07.

Python3

# Python3 program for printing a prime
# levels of binary Tree
  
# A Tree node
class Node:
     
    def __init__(self, key):
       
        self.key = key
        self.left = None
        self.right = None
                 
# function to create a
# new node
def newNode(key):
 
    temp = Node(key);   
    return temp;
  
# Function to check whether
# node Value is prime or not
def isPrime(n):
 
    if (n == 1):
        return False;   
    i = 2
     
    # Iterate from 2
    # to sqrt(n)
    while(i * i <= n):
  
        # If it has a factor
        if (n % i == 0):
            return False;
        i += 1
  
    return True;
 
# Function to print a
# Prime level
def printLevel(queue,
               index, size):
     
    for i in range(index, size):
        print(queue[i].key, end = ' ')
    print()
  
  
# Function to check whether
# given level is prime level
# or not
def isLevelPrime(queue,
                 index, size):
     
    for i in range(index, size):
     
        # Check value of node is
        # pPrime or not
        if (not isPrime(queue[index].key)):
            index += 1
            return False;       
  
    # Return true if for loop
    # iIterate completely
    return True;
  
# Utility function to get Prime
# Level of a given Binary tree
def findPrimeLevels(node, queue,
                    index, size):
 
    # Print root node value, if Prime
    if (isPrime(queue[index].key)):
        print(queue[index].key)
  
    # Run while loop
    while (index < size):
        curr_size = size;
  
        # Run inner while loop
        while (index < curr_size):
            temp = queue[index];
  
            # Push left child in a queue
            if (temp.left != None):
                queue[size] = temp.left;
                size+=1
  
            # Push right child in a queue
            if (temp.right != None):
                queue[size] = temp.right;
                size+=1
  
            # Increment index
            index+=1;
         
  
        # If condition to check, level
        # is prime or not
        if (isLevelPrime(queue, index,
                         size - 1)):
  
            # Function call to print
            # prime level
            printLevel(queue,
                       index, size);       
  
# Function to find total no
# of nodes In a given binary
# tree
def findSize(node):
 
    # Base condition
    if (node == None):
        return 0;
  
    return (1 + findSize(node.left) +
                findSize(node.right));
  
# Function to find Prime levels
# In a given binary tree
def printPrimeLevels(node):
 
    t_size = findSize(node);
  
    # Create queue
    queue=[0 for i in range(t_size)]
  
    # Push root node in a queue
    queue[0] = node;
  
    # Function call
    findPrimeLevels(node, queue,
                    0, 1);
     
# Driver code    
if __name__ == "__main__":
     
    '''      10
         /    \
        13     11
            /  \
           19    23
          / \    / \
         21 29 43 15
                  /
                 7 '''
  
    # Create Binary Tree as shown
    root = newNode(10);
    root.left = newNode(13);
    root.right = newNode(11);
  
    root.right.left = newNode(19);
    root.right.right = newNode(23);
  
    root.right.left.left = newNode(21);
    root.right.left.right = newNode(29);
    root.right.right.left = newNode(43);
    root.right.right.right = newNode(15);
    root.right.right.right.left = newNode(7);
  
    # Print Prime Levels
    printPrimeLevels(root);
 
# This code is contributed by Rutvik_56

C#

// C# program for printing a prime
// levels of binary Tree
using System;
using System.Collections.Generic;
class GFG {
     
    // A Tree node
    class Node {
        
        public int key;
        public Node left, right;
        
        public Node(int key)
        {
            this.key = key;
            left = right = null;
        }
    }
     
    // Utility function to create a new node
    static Node newNode(int key)
    {
        Node temp = new Node(key);
        return temp;
    }
      
    // Function to check whether node
    // Value is prime or not
    static bool isPrime(int n)
    {
        if (n == 1)
            return false;
      
        // Iterate from 2 to sqrt(n)
        for(int i = 2; i * i <= n; i++)
        {
              
            // If it has a factor
            if (n % i == 0)
            {
                return false;
            }
        }
        return true;
    }
      
    // Function to print a Prime level
    static void printLevel(Node[] queue, int index, int size)
    {
        for(int i = index; i < size; i++)
        {
            Console.Write(queue[i].key + " ");
        }
        Console.WriteLine();
    }
      
    // Function to check whether given level is
    // prime level or not
    static bool isLevelPrime(Node[] queue, int index, int size)
    {
        for(int i = index; i < size; i++)
        {
              
            // Check value of node is
            // pPrime or not
            if (!isPrime(queue[index++].key))
            {
                return false;
            }
        }
          
        // Return true if for loop
        // iIterate completely
        return true;
    }
      
    // Utility function to get Prime
    // Level of a given Binary tree
    static void findPrimeLevels(Node node, Node[] queue, int index, int size)
    {
          
        // Print root node value, if Prime
        if (isPrime(queue[index].key))
        {
            Console.WriteLine(queue[index].key);
        }
      
        // Run while loop
        while (index < size)
        {
            int curr_size = size;
      
            // Run inner while loop
            while (index < curr_size)
            {
                Node temp = queue[index];
      
                // Push left child in a queue
                if (temp.left != null)
                    queue[size++] = temp.left;
      
                // Push right child in a queue
                if (temp.right != null)
                    queue[size++] = temp.right;
      
                // Increment index
                index++;
            }
      
            // If condition to check, level is
            // prime or not
            if (isLevelPrime(queue, index, size - 1))
            {
                  
                // Function call to print
                // prime level
                printLevel(queue, index, size);
            }
        }
    }
      
    // Function to find total no of nodes
    // In a given binary tree
    static int findSize(Node node)
    {
          
        // Base condition
        if (node == null)
            return 0;
      
        return 1 + findSize(node.left) +
                   findSize(node.right);
    }
      
    // Function to find Prime levels
    // In a given binary tree
    static void printPrimeLevels(Node node)
    {
        int t_size = findSize(node);
      
        // Create queue
        Node[] queue = new Node[t_size];
        for(int i = 0; i < t_size; i++)
        {
            queue[i] = new Node(0);
        }
      
        // Push root node in a queue
        queue[0] = node;
      
        // Function call
        findPrimeLevels(node, queue, 0, 1);
    }
     
  static void Main() {
    /*     10
         /    \
        13     11
              /  \
            19    23
           / \    / \
          21 29 43 15
                  /
                 7 */
      
    // Create Binary Tree as shown
    Node root = newNode(10);
    root.left = newNode(13);
    root.right = newNode(11);
      
    root.right.left = newNode(19);
    root.right.right = newNode(23);
      
    root.right.left.left = newNode(21);
    root.right.left.right = newNode(29);
    root.right.right.left = newNode(43);
    root.right.right.right = newNode(15);
    root.right.right.right.left = newNode(7);
      
    // Print Prime Levels
    printPrimeLevels(root);
  }
}
 
// This code is contributed by mukesh07.

Javascript

<script>
 
// Javascript program for printing a
// prime levels of binary Tree
 
// A Tree node
class Node
{
    constructor(key)
    {
        this.left = null;
        this.right = null;
        this.key = key;
    }
}
 
// Utility function to create a new node
function newNode(key)
{
    let temp = new Node(key);
    return (temp);
}
 
// Function to check whether node
// Value is prime or not
function isPrime(n)
{
    if (n == 1)
        return false;
 
    // Iterate from 2 to sqrt(n)
    for(let i = 2; i * i <= n; i++)
    {
         
        // If it has a factor
        if (n % i == 0)
        {
            return false;
        }
    }
    return true;
}
 
// Function to print a Prime level
function printLevel(queue, index, size)
{
    for(let i = index; i < size; i++)
    {
         
        document.write(queue[i].key + " ");
    }
    document.write("</br>");
}
 
// Function to check whether given level is
// prime level or not
function isLevelPrime(queue, index, size)
{
    for(let i = index; i < size; i++)
    {
         
        // Check value of node is
        // pPrime or not
        if (!isPrime(queue[index++].key))
        {
            return false;
        }
    }
     
    // Return true if for loop
    // iIterate completely
    return true;
}
 
// Utility function to get Prime
// Level of a given Binary tree
function findPrimeLevels(node, queue, index, size)
{
     
    // Print root node value, if Prime
    if (isPrime(queue[index].key))
    {
        document.write(queue[index].key + "</br>");
    }
 
    // Run while loop
    while (index < size)
    {
        let curr_size = size;
 
        // Run inner while loop
        while (index < curr_size)
        {
            let temp = queue[index];
 
            // Push left child in a queue
            if (temp.left != null)
                queue[size++] = temp.left;
 
            // Push right child in a queue
            if (temp.right != null)
                queue[size++] = temp.right;
 
            // Increment index
            index++;
        }
 
        // If condition to check, level is
        // prime or not
        if (isLevelPrime(queue, index, size - 1))
        {
             
            // Function call to print
            // prime level
            printLevel(queue, index, size);
        }
    }
}
 
// Function to find total no of nodes
// In a given binary tree
function findSize(node)
{
     
    // Base condition
    if (node == null)
        return 0;
 
    return 1 + findSize(node.left) +
               findSize(node.right);
}
 
// Function to find Prime levels
// In a given binary tree
function printPrimeLevels(node)
{
    let t_size = findSize(node);
 
    // Create queue
    let queue = new Array(t_size);
    for(let i = 0; i < t_size; i++)
    {
        queue[i] = new Node();
    }
 
    // Push root node in a queue
    queue[0] = node;
 
    // Function call
    findPrimeLevels(node, queue, 0, 1);
}
 
// Driver code
/*     10
     /    \
    13     11
          /  \
        19    23
       / \    / \
      21 29 43 15
              /
             7 */
 
// Create Binary Tree as shown
let root = newNode(10);
root.left = newNode(13);
root.right = newNode(11);
 
root.right.left = newNode(19);
root.right.right = newNode(23);
 
root.right.left.left = newNode(21);
root.right.left.right = newNode(29);
root.right.right.left = newNode(43);
root.right.right.right = newNode(15);
root.right.right.right.left = newNode(7);
 
// Print Prime Levels
printPrimeLevels(root);
 
// This code is contributed by mukesh07
 
</script>
Producción: 

13 11 
19 23 
7

 

Publicación traducida automáticamente

Artículo escrito por MohammadMudassir y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *