Dada una string de caracteres alfabéticos inferiores, encuentre el carácter K-ésimo en una string formada por substrings (de una string dada) cuando se concatenan en forma ordenada.
Ejemplos:
Input : str = “banana” K = 10 Output : n All substring in sorted form are, "a", "an", "ana", "anan", "anana", "b", "ba", "ban", "bana", "banan", "banana", "n", "na", "nan", "nana" Concatenated string = “aananaanana nanabbabanbanabananbananannanannana” We can see a 10th character in the above concatenated string is ‘n’ which is our final answer.
Una solución simple es generar todas las substrings de una string determinada y almacenarlas en una array. Una vez que se generan las substrings, ordénelas y concatene después de ordenarlas. Finalmente imprima el carácter K-ésimo en la string concatenada.
Una solución eficiente se basa en contar distintas substrings de una string usando una array de sufijos . El mismo método se utiliza para resolver este problema también. Después de obtener la array de sufijos y la array de lcp, recorremos todos los valores de lcp y, para cada uno de esos valores, calculamos los caracteres que se omitirán. Seguimos restando estos muchos caracteres de nuestra K, cuando el carácter a saltar se convierte en más que K, nos detenemos y recorremos las substrings correspondientes al lcp[i] actual, en el que recorremos desde lcp[i] hasta la longitud máxima de la string y luego imprime el carácter Kth.
Implementación:
C++
// C++ program to print Kth character // in sorted concatenated substrings #include <bits/stdc++.h> using namespace std; // Structure to store information of a suffix struct suffix { int index; // To store original index int rank[2]; // To store ranks and next // rank pair }; // A comparison function used by sort() to compare // two suffixes. Compares two pairs, returns 1 if // first pair is smaller int cmp(struct suffix a, struct suffix b) { return (a.rank[0] == b.rank[0])? (a.rank[1] < b.rank[1] ?1: 0): (a.rank[0] < b.rank[0] ?1: 0); } // This is the main function that takes a string // 'txt' of size n as an argument, builds and return // the suffix array for the given string vector<int> buildSuffixArray(string txt, int n) { // A structure to store suffixes and their indexes struct suffix suffixes[n]; // Store suffixes and their indexes in an array // of structures. The structure is needed to sort // the suffixes alphabetically and maintain their // old indexes while sorting for (int i = 0; i < n; i++) { suffixes[i].index = i; suffixes[i].rank[0] = txt[i] - 'a'; suffixes[i].rank[1] = ((i+1) < n)? (txt[i + 1] - 'a'): -1; } // Sort the suffixes using the comparison function // defined above. sort(suffixes, suffixes+n, cmp); // At his point, all suffixes are sorted according // to first 2 characters. Let us sort suffixes // according to first 4 characters, then first // 8 and so on int ind[n]; // This array is needed to get the // index in suffixes[] from original // index. This mapping is needed to get // next suffix. for (int k = 4; k < 2*n; k = k*2) { // Assigning rank and index values to first suffix int rank = 0; int prev_rank = suffixes[0].rank[0]; suffixes[0].rank[0] = rank; ind[suffixes[0].index] = 0; // Assigning rank to suffixes for (int i = 1; i < n; i++) { // If first rank and next ranks are same as // that of previous suffix in array, assign // the same new rank to this suffix if (suffixes[i].rank[0] == prev_rank && suffixes[i].rank[1] == suffixes[i-1].rank[1]) { prev_rank = suffixes[i].rank[0]; suffixes[i].rank[0] = rank; } else // Otherwise increment rank and assign { prev_rank = suffixes[i].rank[0]; suffixes[i].rank[0] = ++rank; } ind[suffixes[i].index] = i; } // Assign next rank to every suffix for (int i = 0; i < n; i++) { int nextindex = suffixes[i].index + k/2; suffixes[i].rank[1] = (nextindex < n)? suffixes[ind[nextindex]].rank[0]: -1; } // Sort the suffixes according to first k characters sort(suffixes, suffixes+n, cmp); } // Store indexes of all sorted suffixes in the suffix // array vector<int>suffixArr; for (int i = 0; i < n; i++) suffixArr.push_back(suffixes[i].index); // Return the suffix array return suffixArr; } /* To construct and return LCP */ vector<int> kasai(string txt, vector<int> suffixArr) { int n = suffixArr.size(); // To store LCP array vector<int> lcp(n, 0); // An auxiliary array to store inverse of suffix array // elements. For example if suffixArr[0] is 5, the // invSuff[5] would store 0. This is used to get next // suffix string from suffix array. vector<int> invSuff(n, 0); // Fill values in invSuff[] for (int i=0; i < n; i++) invSuff[suffixArr[i]] = i; // Initialize length of previous LCP int k = 0; // Process all suffixes one by one starting from // first suffix in txt[] for (int i=0; i<n; i++) { /* If the current suffix is at n-1, then we don’t have next substring to consider. So lcp is not defined for this substring, we put zero. */ if (invSuff[i] == n-1) { k = 0; continue; } /* j contains index of the next substring to be considered to compare with the present substring, i.e., next string in suffix array */ int j = suffixArr[invSuff[i]+1]; // Directly start matching from k'th index as // at-least k-1 characters will match while (i+k<n && j+k<n && txt[i+k]==txt[j+k]) k++; lcp[invSuff[i]] = k; // lcp for the present suffix. // Deleting the starting character from the string. if (k>0) k--; } // return the constructed lcp array return lcp; } // Utility method to get sum of first N numbers int sumOfFirstN(int N) { return (N * (N + 1)) / 2; } // Returns Kth character in sorted concatenated // substrings of str char printKthCharInConcatSubstring(string str, int K) { int n = str.length(); // calculating suffix array and lcp array vector<int> suffixArr = buildSuffixArray(str, n); vector<int> lcp = kasai(str, suffixArr); for (int i = 0; i < lcp.size(); i++) { // skipping characters common to substring // (n - suffixArr[i]) is length of current // maximum substring lcp[i] will length of // common substring int charToSkip = sumOfFirstN(n - suffixArr[i]) - sumOfFirstN(lcp[i]); /* if characters are more than K, that means Kth character belongs to substring corresponding to current lcp[i]*/ if (K <= charToSkip) { // loop from current lcp value to current // string length for (int j = lcp[i] + 1; j <= (n-suffixArr[i]); j++) { int curSubstringLen = j; /* Again reduce K by current substring's length one by one and when it becomes less, print Kth character of current substring */ if (K <= curSubstringLen) return str[(suffixArr[i] + K - 1)]; else K -= curSubstringLen; } break; } else K -= charToSkip; } } // Driver code to test above methods int main() { string str = "banana"; int K = 10; cout << printKthCharInConcatSubstring(str, K); return 0; }
Python3
# Python3 program to print Kth character # in sorted concatenated substrings # Structure to store information of a suffix class suffix: def __init__(self): self.index = 0 # To store original index self.rank = [0] * 2 # To store ranks and next # rank pair # This is the main function that takes a string # 'txt' of size n as an argument, builds and return # the suffix array for the given string def buildSuffixArray(txt: str, n: int) -> list: # A structure to store suffixes # and their indexes suffixes = [0] * n for i in range(n): suffixes[i] = suffix() # Store suffixes and their indexes in an array # of structures. The structure is needed to sort # the suffixes alphabetically and maintain their # old indexes while sorting for i in range(n): suffixes[i].index = i suffixes[i].rank[0] = ord(txt[i]) - ord('a') suffixes[i].rank[1] = (ord(txt[i + 1]) - ord('a')) if ((i + 1) < n) else -1 # Sort the suffixes using the comparison function # defined above. suffixes.sort(key = lambda a: a.rank) # At his point, all suffixes are sorted according # to first 2 characters. Let us sort suffixes # according to first 4 characters, then first # 8 and so on ind = [0] * n # This array is needed to get the # index in suffixes[] from original # index. This mapping is needed to get # next suffix. k = 4 while k < 2 * n: k *= 2 # for k in range(4, 2 * n, k * 2): # Assigning rank and index values # to first suffix rank = 0 prev_rank = suffixes[0].rank[0] suffixes[0].rank[0] = rank ind[suffixes[0].index] = 0 # Assigning rank to suffixes for i in range(1, n): # If first rank and next ranks are same as # that of previous suffix in array, assign # the same new rank to this suffix if (suffixes[i].rank[0] == prev_rank and suffixes[i].rank[1] == suffixes[i - 1].rank[1]): prev_rank = suffixes[i].rank[0] suffixes[i].rank[0] = rank # Otherwise increment rank and assign else: prev_rank = suffixes[i].rank[0] rank += 1 suffixes[i].rank[0] = rank ind[suffixes[i].index] = i # Assign next rank to every suffix for i in range(n): nextindex = suffixes[i].index + k // 2 suffixes[i].rank[1] = suffixes[ind[nextindex]].rank[0] if ( nextindex < n) else -1 # Sort the suffixes according to first k characters suffixes.sort(key = lambda a : a.rank) # Store indexes of all sorted suffixes # in the suffix array suffixArr = [] for i in range(n): suffixArr.append(suffixes[i].index) # Return the suffix array return suffixArr # To construct and return LCP */ def kasai(txt: str, suffixArr: list) -> list: n = len(suffixArr) # To store LCP array lcp = [0] * n # An auxiliary array to store inverse of # suffix array elements. For example if # suffixArr[0] is 5, the invSuff[5] would # store 0. This is used to get next # suffix string from suffix array. invSuff = [0] * n # Fill values in invSuff[] for i in range(n): invSuff[suffixArr[i]] = i # Initialize length of previous LCP k = 0 # Process all suffixes one by one # starting from first suffix in txt[] for i in range(n): # If the current suffix is at n-1, then # we don’t have next substring to # consider. So lcp is not defined for # this substring, we put zero. if (invSuff[i] == n - 1): k = 0 continue # j contains index of the next substring to # be considered to compare with the present # substring, i.e., next string in suffix array j = suffixArr[invSuff[i] + 1] # Directly start matching from k'th index as # at-least k-1 characters will match while (i + k < n and j + k < n and txt[i + k] == txt[j + k]): k += 1 lcp[invSuff[i]] = k # lcp for the present suffix. # Deleting the starting character # from the string. if (k > 0): k -= 1 # Return the constructed lcp array return lcp # Utility method to get sum of first N numbers def sumOfFirstN(N: int) -> int: return (N * (N + 1)) // 2 # Returns Kth character in sorted concatenated # substrings of str def printKthCharInConcatSubstring(string: str, K: int) -> str: n = len(string) # Calculating suffix array and lcp array suffixArr = buildSuffixArray(string, n) lcp = kasai(string, suffixArr) for i in range(len(lcp)): # Skipping characters common to substring # (n - suffixArr[i]) is length of current # maximum substring lcp[i] will length of # common substring charToSkip = (sumOfFirstN(n - suffixArr[i]) - sumOfFirstN(lcp[i])) # If characters are more than K, that means # Kth character belongs to substring # corresponding to current lcp[i] if (K <= charToSkip): # Loop from current lcp value to current # string length for j in range(lcp[i] + 1, (n - suffixArr[i]) + 1): curSubstringLen = j # Again reduce K by current substring's # length one by one and when it becomes less, # print Kth character of current substring if (K <= curSubstringLen): return string[(suffixArr[i] + K - 1)] else: K -= curSubstringLen break else: K -= charToSkip # Driver code if __name__ == "__main__": string = "banana" K = 10 print(printKthCharInConcatSubstring(string, K)) # This code is contributed by sanjeev2552
n
Este artículo es una contribución de Utkarsh Trivedi . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA