Imprima los elementos de la array de arriba a la izquierda a abajo a la derecha en forma diagonal hacia arriba

Dado un vector de vectores arr[] , la tarea es imprimir los elementos de arr[] en el orden diagonalmente ascendente como se ilustra a continuación.

Ejemplos: 

Entrada: arr[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
Salida: 1 4 2 7 5 3 8 6 9
Explicación:
A continuación se muestra la ilustración de cómo se imprime el orden diagonalmente hacia arriba:

Entrada: arr[][] = {{1, 2, 3, 4, 5}, {6, 7}, {8}, {9, 10, 11}, {12, 13, 14, 15, 16} }
Salida: 1 6 28 7 3 9 4 12 10 5 13 11 14 15 16
Explicación:
A continuación se muestra la ilustración de cómo se imprime el orden en diagonal hacia arriba:

Enfoque: La idea se basa en la observación de que todos los elementos en una determinada diagonal ascendente tienen una suma igual a (índice de fila + índice de columna) . Siga los pasos para resolver el problema:

  • Inicialice un vector de vectores v para almacenar los elementos en el formato deseado.
  • Itere sobre la array arr[][] usando las variables i y j y para cada i y j empuje arr[i][j] a v[i + j] .
  • Después de los pasos anteriores, invierta cada fila en la v .
  • Ahora, imprima todos los elementos almacenados en v en forma de fila para obtener el resultado deseado.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to traverse the matrix
// diagonally upwards
void printDiagonalTraversal(
    vector<vector<int> >& nums)
{
    // Stores the maximum size of vector
    // from all row of matrix nums[][]
    int max_size = nums.size();
 
    for (int i = 0; i < nums.size(); i++) {
        if (max_size < nums[i].size()) {
            max_size = nums[i].size();
        }
    }
 
    // Store elements in desired order
    vector<vector<int> > v(2 * max_size - 1);
 
    // Store every element on the basis
    // of sum of index (i + j)
    for (int i = 0; i < nums.size(); i++) {
 
        for (int j = 0;
             j < nums[i].size(); j++) {
            v[i + j].push_back(nums[i][j]);
        }
    }
 
    // Print the stored result
    for (int i = 0; i < v.size(); i++) {
 
        // Reverse all sublist
        reverse(v[i].begin(), v[i].end());
 
        for (int j = 0; j < v[i].size(); j++)
            cout << v[i][j] << " ";
    }
}
 
// Driver code
int main()
{
    // Given vector of vectors arr
    vector<vector<int> > arr
        = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
 
    // Function Call
    printDiagonalTraversal(arr);
 
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
 
class GFG{
     
// Function to traverse the matrix
// diagonally upwards
static void printDiagonalTraversal(int[][] nums)
{
     
    // Stores the maximum size of vector
    // from all row of matrix nums[][]
    int max_size = nums[0].length;
   
    // Store elements in desired order
    ArrayList<
    ArrayList<Integer>> v = new ArrayList<
                                ArrayList<Integer>>();
                                 
    for(int i = 0; i < 2 * max_size - 1; i++)
    {
        v.add(new ArrayList<Integer>());
    }
   
    // Store every element on the basis
    // of sum of index (i + j)
    for(int i = 0; i < nums[0].length; i++)
    {
        for(int j = 0; j < nums[0].length; j++)
        {
            v.get(i + j).add(nums[i][j]);
        }
    }
   
    // Print the stored result
    for(int i = 0; i < v.size(); i++)
    {
          
        // Print in reverse order
        for(int j = v.get(i).size() - 1;
                j >= 0; j--)
        {
            System.out.print(v.get(i).get(j) + " ");
        }
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given vector of vectors arr
    int[][] arr = { { 1, 2, 3 },
                    { 4, 5, 6 },
                    { 7, 8, 9 } };
      
    // Function Call
    printDiagonalTraversal(arr);
}
}
 
// This code is contributed by divyeshrabadiya07

Python3

# Python3 program for the above approach
 
# Function to traverse the matrix
# diagonally upwards
def printDiagonalTraversal(nums):
     
    # Stores the maximum size of vector
    # from all row of matrix nums[][]
    max_size = len(nums)
 
    for i in range(len(nums)):
        if (max_size < len(nums[i])):
            max_size = len(nums[i])
 
    # Store elements in desired order
    v = [[] for i in range(2 * max_size - 1)]
 
    # Store every element on the basis
    # of sum of index (i + j)
    for i in range(len(nums)):
        for j in range(len(nums[i])):
            v[i + j].append(nums[i][j])
 
    # Print the stored result
    for i in range(len(v)):
 
        # Reverse all sublist
        v[i] = v[i][::-1]
 
        for j in range(len(v[i])):
            print(v[i][j], end = " ")
 
# Driver code
if __name__ == '__main__':
     
    # Given vector of vectors arr
    arr = [ [ 1, 2, 3 ],
            [ 4, 5, 6 ],
            [ 7, 8, 9 ] ]
 
    # Function Call
    printDiagonalTraversal(arr)
 
# This code is contributed by mohit kumar 29

C#

// C# program for the above approach
using System;
using System.Collections.Generic; 
 
class GFG{
     
// Function to traverse the matrix
// diagonally upwards
static void printDiagonalTraversal(int[,] nums)
{
     
    // Stores the maximum size of vector
    // from all row of matrix nums[][]
    int max_size = nums.GetLength(0);
  
    // Store elements in desired order
    List<List<int>> v = new List<List<int>>();
    for(int i = 0; i < 2 * max_size - 1; i++)
    {
        v.Add(new List<int>());
    }
  
    // Store every element on the basis
    // of sum of index (i + j)
    for(int i = 0; i < nums.GetLength(0); i++)
    {
        for(int j = 0; j < nums.GetLength(0); j++)
        {
            v[i + j].Add(nums[i, j]);
        }
    }
  
    // Print the stored result
    for(int i = 0; i < v.Count; i++)
    {
         
        // print in reverse order
        for(int j = v[i].Count - 1; j >= 0; j--)
        {
            Console.Write(v[i][j] + " ");
        }
    }
}
 
// Driver Code
static void Main()
{
     
    // Given vector of vectors arr
    int[,] arr = { { 1, 2, 3 },
                   { 4, 5, 6 },
                   { 7, 8, 9 } };
     
    // Function Call
    printDiagonalTraversal(arr);
}
}
 
// This code is contributed by divyesh072019

Javascript

<script>
 
// Javascript program for the above approach
 
// Function to traverse the matrix
// diagonally upwards
function printDiagonalTraversal(nums)
{
     
    // Stores the maximum size of vector
    // from all row of matrix nums[][]
    let max_size = nums[0].length;
    
    // Store elements in desired order
    let v = [];
                                  
    for(let i = 0; i < 2 * max_size - 1; i++)
    {
        v.push([]);
    }
    
    // Store every element on the basis
    // of sum of index (i + j)
    for(let i = 0; i < nums[0].length; i++)
    {
        for(let j = 0; j < nums[0].length; j++)
        {
            v[i + j].push(nums[i][j]);
        }
    }
    
    // Print the stored result
    for(let i = 0; i < v.length; i++)
    {
         
        // Print in reverse order
        for(let j = v[i].length - 1;
                j >= 0; j--)
        {
            document.write(v[i][j] + " ");
        }
    }
}
 
// Driver Code
 
// Given vector of vectors arr
let arr = [ [ 1, 2, 3 ],
            [ 4, 5, 6 ],
            [ 7, 8, 9 ] ];
       
// Function Call
printDiagonalTraversal(arr);
 
// This code is contributed by avanitrachhadiya2155
 
</script>
Producción: 

1 4 2 7 5 3 8 6 9

 

Complejidad temporal: O(N*M), donde N es el tamaño de la array dada y M es el tamaño máximo de cualquier fila de la array.
Espacio auxiliar: O(N*M)

Enfoque alternativo: el problema anterior también se puede resolver utilizando queue . Siga los pasos para resolver el problema:

  • Inicialice una cola Q e inserte el índice de la primera celda de arr[][] , es decir, (0, 0) .
  • Inicialice un vector v para almacenar los elementos en el formato deseado.
  • Mientras q no esté vacío, haga lo siguiente:
    • Coloca el elemento al frente de la cola y empújalo en v . 
    • Empuje el índice de la celda actual justo debajo de él, solo si la celda actual es la primera en su fila.
    • Empuje el índice de su celda vecina derecha si existe.
  • Después de los pasos anteriores, imprima todos los elementos almacenados en v .

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to traverse the matrix
// diagonally upwards
void printDiagonalTraversal(
    vector<vector<int> >& nums)
{
    // Store the number of rows
    int m = nums.size();
 
    // Initialize queue
    queue<pair<int, int> > q;
 
    // Push the index of first element
    // i.e., (0, 0)
    q.push({ 0, 0 });
 
    while (!q.empty()) {
 
        // Get the front element
        pair<int, int> p = q.front();
 
        // Pop the element at the front
        q.pop();
        cout << nums[p.first][p.second]
             << " ";
 
        // Insert the element below
        // if the current element is
        // in first column
        if (p.second == 0
            && p.first + 1 < m) {
            q.push({ p.first + 1,
                     p.second });
        }
 
        // Insert the right neighbour
        // if it exists
        if (p.second + 1 < nums[p.first].size())
            q.push({ p.first,
                     p.second + 1 });
    }
}
 
// Driver Code
int main()
{
    // Given vector of vectors arr
    vector<vector<int> > arr
        = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
 
    // Function call
    printDiagonalTraversal(arr);
 
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
 
class GFG{
     
    static class pair
    {
        int first, second;
        public pair(int first, int second) 
        {
            this.first = first;
            this.second = second;
        }   
    }
   
// Function to traverse the matrix
// diagonally upwards
static void printDiagonalTraversal(
    int [][]nums)
{
   
    // Store the number of rows
    int m = nums.length;
 
    // Initialize queue
    Queue<pair> q = new LinkedList<>();
 
    // Push the index of first element
    // i.e., (0, 0)
    q.add(new pair( 0, 0 ));
 
    while (!q.isEmpty()) {
 
        // Get the front element
        pair p = q.peek();
 
        // Pop the element at the front
        q.remove();
        System.out.print(nums[p.first][p.second]
            + " ");
 
        // Insert the element below
        // if the current element is
        // in first column
        if (p.second == 0
            && p.first + 1 < m) {
            q.add(new pair( p.first + 1,
                     p.second ));
        }
 
        // Insert the right neighbour
        // if it exists
        if (p.second + 1 < nums[p.first].length)
            q.add(new pair(  p.first,
                     p.second + 1 ));
    }
}
 
// Driver Code
public static void main(String[] args)
{
    // Given vector of vectors arr
    int[][] arr
        = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
 
    // Function call
    printDiagonalTraversal(arr);
 
}
}
 
// This code is contributed by Amit Katiyar

Python3

# Python3 program for the above approach
 
# Function to traverse the matrix
# diagonally upwards
def printDiagonalTraversal(nums):
 
    # Store the number of rows
    m = len(nums)
 
    # Initialize queue
    q = []
 
    # Push the index of first element
    # i.e., (0, 0)
    q.append([ 0, 0 ])
 
    while (len(q) != 0):
 
        # Get the front element
        p = q[0]
 
        # Pop the element at the front
        q.pop(0);
        print(nums[p[0]][p[1]], end = " ")
 
        # Insert the element below
        # if the current element is
        # in first column
        if (p[1] == 0
            and p[0] + 1 < m):
            q.append([ p[0]+ 1,
                     p[1] ]);
         
        # Insert the right neighbour
        # if it exists
        if (p[1] + 1 < len(nums[p[0]])):
            q.append([ p[0],
                     p[1] + 1 ]);
 
# Driver Code
if __name__ == "__main__":
   
    # Given vector of vectors arr
    arr = [[ 1, 2, 3 ], [ 4, 5, 6 ] ,[ 7, 8, 9 ]]
 
    # Function call
    printDiagonalTraversal(arr);
 
    # This code is contributed by chitranayal

C#

// C# program for the above approach
using System;
using System.Collections.Generic;
public class GFG
{
    class pair
    {
        public int first, second;
        public pair(int first, int second) 
        {
            this.first = first;
            this.second = second;
        }   
    }
   
// Function to traverse the matrix
// diagonally upwards
static void printDiagonalTraversal(
    int [,]nums)
{
   
    // Store the number of rows
    int m = nums.GetLength(0);
 
    // Initialize queue
    Queue<pair> q = new Queue<pair>();
 
    // Push the index of first element
    // i.e., (0, 0)
    q.Enqueue(new pair(0, 0));
    while (q.Count != 0)
    {
 
        // Get the front element
        pair p = q.Peek();
 
        // Pop the element at the front
        q.Dequeue();
        Console.Write(nums[p.first,p.second]
            + " ");
 
        // Insert the element below
        // if the current element is
        // in first column
        if (p.second == 0
            && p.first + 1 < m)
        {
            q.Enqueue(new pair( p.first + 1,
                     p.second ));
        }
 
        // Insert the right neighbour
        // if it exists
        if (p.second + 1 < nums.GetLength(1))
            q.Enqueue(new pair(  p.first,
                     p.second + 1 ));
    }
}
 
// Driver Code
public static void Main(String[] args)
{
   
    // Given vector of vectors arr
    int[,] arr
        = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
 
    // Function call
    printDiagonalTraversal(arr);
}
}
 
// This code is contributed by shikhasingrajput

Javascript

<script>
// Javascript program for the above approach
 
class pair
{
    constructor(first,second)
    {
        this.first = first;
            this.second = second;
    }
}
 
// Function to traverse the matrix
// diagonally upwards
function printDiagonalTraversal(nums)
{
 
    // Store the number of rows
    let m = nums.length;
  
    // Initialize queue
    let q = [];
  
    // Push the index of first element
    // i.e., (0, 0)
    q.push(new pair( 0, 0 ));
  
    while (q.length!=0) {
  
        // Get the front element
        let p = q[0];
  
        // Pop the element at the front
        q.shift();
        document.write(nums[p.first][p.second]
            + " ");
  
        // Insert the element below
        // if the current element is
        // in first column
        if (p.second == 0
            && p.first + 1 < m) {
            q.push(new pair( p.first + 1,
                     p.second ));
        }
  
        // Insert the right neighbour
        // if it exists
        if (p.second + 1 < nums[p.first].length)
            q.push(new pair(  p.first,
                     p.second + 1 ));
    }
}
 
// Driver Code
// Given vector of vectors arr
let arr=[[ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9] ];
 
// Function call
printDiagonalTraversal(arr);
 
// This code is contributed by rag2127
</script>
Producción: 

1 4 2 7 5 3 8 6 9

 

Complejidad temporal: O(N*M), donde N es el tamaño de la array dada y M es el tamaño máximo de cualquier fila de la array.
Espacio Auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por Rohit_prasad y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *