Dado un árbol binario completo como array, la tarea es imprimir todos sus niveles en orden.
Ejemplos:
Input: arr[] = {7, 6, 5, 4, 3, 2, 1} The given tree looks like 7 / \ 6 5 / \ / \ 4 3 2 1 Output: 7 5 6 1 2 3 4 Input: arr[] = {5, 6, 4, 9, 2, 1} The given tree looks like 5 / \ 6 4 / \ / 9 2 1 Output: 5 4 6 1 2 9
Enfoque: aquí se analiza un problema similar ,
ya que el árbol dado es un árbol binario completo :
No. of nodes at a level l will be 2l where l ≥ 0
- Comience a recorrer la array con el nivel inicializado en 0.
- Ordene los elementos que forman parte del nivel actual e imprima los elementos.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to print all the levels // of the given tree in sorted order void printSortedLevels(int arr[], int n) { // Initialize level with 0 int level = 0; for (int i = 0; i < n; level++) { // Number of nodes at current level int cnt = (int)pow(2, level); // Indexing of array starts from 0 // so subtract no. of nodes by 1 cnt -= 1; // Index of the last node in the current level int j = min(i + cnt, n - 1); // Sort the nodes of the current level sort(arr + i, arr + j + 1); // Print the sorted nodes while (i <= j) { cout << arr[i] << " "; i++; } cout << endl; } } // Driver code int main() { int arr[] = { 5, 6, 4, 9, 2, 1 }; int n = sizeof(arr) / sizeof(arr[0]); printSortedLevels(arr, n); return 0; }
Java
// Java implementation of the approach import java.util.Arrays; class GFG { // Function to print all the levels // of the given tree in sorted order static void printSortedLevels(int arr[], int n) { // Initialize level with 0 int level = 0; for (int i = 0; i < n; level++) { // Number of nodes at current level int cnt = (int)Math.pow(2, level); // Indexing of array starts from 0 // so subtract no. of nodes by 1 cnt -= 1; // Index of the last node in the current level int j = Math.min(i + cnt, n - 1); // Sort the nodes of the current level Arrays.sort(arr, i, j+1); // Print the sorted nodes while (i <= j) { System.out.print(arr[i] + " "); i++; } System.out.println(); } } // Driver code public static void main(String[] args) { int arr[] = { 5, 6, 4, 9, 2, 1 }; int n = arr.length; printSortedLevels(arr, n); } } // This code is contributed by 29AjayKumar
Python3
# Python3 implementation of the approach from math import pow # Function to print all the levels # of the given tree in sorted order def printSortedLevels(arr, n): # Initialize level with 0 level = 0 i = 0 while(i < n): # Number of nodes at current level cnt = int(pow(2, level)) # Indexing of array starts from 0 # so subtract no. of nodes by 1 cnt -= 1 # Index of the last node in the current level j = min(i + cnt, n - 1) # Sort the nodes of the current level arr = arr[:i] + sorted(arr[i:j + 1]) + \ arr[j + 1:] # Print the sorted nodes while (i <= j): print(arr[i], end = " ") i += 1 print() level += 1 # Driver code arr = [ 5, 6, 4, 9, 2, 1] n = len(arr) printSortedLevels(arr, n) # This code is contributed by SHUBHAMSINGH10
C#
// C# implementation of the approach using System; using System.Linq; class GFG { // Function to print all the levels // of the given tree in sorted order static void printSortedLevels(int []arr, int n) { // Initialize level with 0 int level = 0; for (int i = 0; i < n; level++) { // Number of nodes at current level int cnt = (int)Math.Pow(2, level); // Indexing of array starts from 0 // so subtract no. of nodes by 1 cnt -= 1; // Index of the last node in the current level int j = Math.Min(i + cnt, n - 1); // Sort the nodes of the current level Array.Sort(arr, i, j + 1 - i); // Print the sorted nodes while (i <= j) { Console.Write(arr[i] + " "); i++; } Console.WriteLine(); } } // Driver code public static void Main(String[] args) { int []arr = { 5, 6, 4, 9, 2, 1 }; int n = arr.Length; printSortedLevels(arr, n); } } // This code is contributed by 29AjayKumar
Javascript
<script> // JavaScript implementation of the approach // Function to sort the elements of the array // from index a to index b function partSort(arr, N, a, b) { // Variables to store start and end of the index range let l = Math.min(a, b); let r = Math.max(a, b); // Temporary array let temp = new Array(r - l + 1); temp.fill(0); let j = 0; for (let i = l; i <= r; i++) { temp[j] = arr[i]; j++; } // Sort the temporary array temp.sort(function(a, b){return a - b}); // Modifying original array with temporary array elements j = 0; for (let i = l; i <= r; i++) { arr[i] = temp[j]; j++; } } // Function to print all the levels // of the given tree in sorted order function printSortedLevels(arr, n) { // Initialize level with 0 let level = 0; for (let i = 0; i < n; level++) { // Number of nodes at current level let cnt = Math.pow(2, level); // Indexing of array starts from 0 // so subtract no. of nodes by 1 cnt -= 1; // Index of the last node in the current level let j = Math.min(i + cnt, n - 1); // Sort the nodes of the current level partSort(arr, n, i, j + 1); // Print the sorted nodes while (i <= j) { document.write(arr[i] + " "); i++; } document.write("</br>"); } } let arr = [ 5, 6, 4, 9, 2, 1 ]; let n = arr.length; printSortedLevels(arr, n); </script>
Producción:
5 4 6 1 2 9
Complejidad de tiempo : O (nlogn) donde n no es ningún Node en el árbol binario
Publicación traducida automáticamente
Artículo escrito por sajal10798 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA