Dada una array, invierta cada sub-array que satisfaga las restricciones dadas.
Hemos discutido una solución donde invertimos cada subarreglo formado por k elementos consecutivos en el Conjunto 1 . En este conjunto, discutiremos varias variaciones interesantes de este problema.
Variación 1 (Grupos alternativos inversos): Invierte cada subarreglo alternativo formado por k elementos consecutivos.
Ejemplos:
Input: arr = [1, 2, 3, 4, 5, 6, 7, 8, 9] k = 3 Output: [3, 2, 1, 4, 5, 6, 9, 8, 7] Input: arr = [1, 2, 3, 4, 5, 6, 7, 8] k = 2 Output: [2, 1, 3, 4, 6, 5, 7, 8]
A continuación se muestra la implementación:
C++
// C++ program to reverse every alternate sub-array // formed by consecutive k elements #include <iostream> using namespace std; // Function to reverse every alternate sub-array // formed by consecutive k elements void reverse(int arr[], int n, int k) { // increment i in multiples of 2*k for (int i = 0; i < n; i += 2*k) { int left = i; // to handle case when 2*k is not multiple of n int right = min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) swap(arr[left++], arr[right--]); } } // Driver code int main() { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}; int k = 3; int n = sizeof(arr) / sizeof(arr[0]); reverse(arr, n, k); for (int i = 0; i < n; i++) cout << arr[i] << " "; return 0; }
Java
// Java program to reverse // every alternate sub-array // formed by consecutive k elements class GFG { // Function to reverse every // alternate sub-array formed // by consecutive k elements static void reverse(int arr[], int n, int k) { // increment i in multiples of 2*k for (int i = 0; i < n; i += 2 * k) { int left = i; // to handle case when 2*k is not multiple of n int right = Math.min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) { swap(arr, left++, right--); } } } static int[] swap(int[] array, int i, int j) { int temp = array[i]; array[i] = array[j]; array[j] = temp; return array; } // Driver code public static void main(String[] args) { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}; int k = 3; int n = arr.length; reverse(arr, n, k); for (int i = 0; i < n; i++) { System.out.print(arr[i] + " "); } } } // This code has been contributed by 29AjayKumar
Python3
# Python3 program to reverse every alternate sub-array # formed by consecutive k elements # Function to reverse every alternate sub-array # formed by consecutive k elements def reverse(arr, n, k): # increment i in multiples of 2*k for i in range(0,n,2*k): left = i # to handle case when 2*k is not multiple of n right = min(i + k - 1, n - 1) # reverse the sub-array [left, right] while (left < right): temp = arr[left] arr[left] = arr[right] arr[right] = temp left += 1 right -= 1 # Driver code if __name__ == '__main__': arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] k = 3 n = len(arr) reverse(arr, n, k) for i in range(0,n,1): print(arr[i],end =" ") # This code is contributed by # Surendra_Gangwar
C#
// C# program to reverse every alternate // sub-array formed by consecutive k elements using System; class GFG { // Function to reverse every // alternate sub-array formed // by consecutive k elements static void reverse(int []arr, int n, int k) { // increment i in multiples of 2*k for (int i = 0; i < n; i += 2 * k) { int left = i; // to handle case when 2*k is // not multiple of n int right = Math.Min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) { swap(arr, left++, right--); } } } static int[] swap(int[] array, int i, int j) { int temp = array[i]; array[i] = array[j]; array[j] = temp; return array; } // Driver code public static void Main(String[] args) { int []arr = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}; int k = 3; int n = arr.Length; reverse(arr, n, k); for (int i = 0; i < n; i++) { Console.Write(arr[i] + " "); } } } // This code is contributed by PrinciRaj1992
Javascript
<script> // Javascript program to reverse // every alternate sub-array // formed by consecutive k elements // Function to reverse every // alternate sub-array formed // by consecutive k elements function reverse(arr, n, k) { // Increment i in multiples of 2*k for(let i = 0; i < n; i += 2 * k) { let left = i; // To handle case when 2*k is // not multiple of n let right = Math.min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) { swap(arr, left++, right--); } } } function swap(array, i, j) { let temp = array[i]; array[i] = array[j]; array[j] = temp; return array; } // Driver code let arr = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 ]; let k = 3; let n = arr.length; reverse(arr, n, k); for(let i = 0; i < n; i++) { document.write(arr[i] + " "); } // This code is contributed by rag2127 </script>
3 2 1 4 5 6 9 8 7 10 11 12 14 13
Variación 2 (Reversa a distancia dada): Invierte cada subarreglo formado por k elementos consecutivos separados por una distancia dada.
Ejemplos:
Input: arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] k = 3 m = 2 Output: [3, 2, 1, 4, 5, 8, 7, 6, 9, 10] Input: arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] k = 3 m = 1 Output: [3, 2, 1, 4, 7, 6, 5, 8, 10, 9] Input: arr = [1, 2, 3, 4, 5, 6, 7, 8] k = 2 m = 0 Output: [2, 1, 4, 3, 6, 5, 8, 7]
A continuación se muestra su implementación:
C++
// C++ program to reverse every sub-array formed by // consecutive k elements at given distance apart #include <iostream> using namespace std; // Function to reverse every sub-array formed by // consecutive k elements at m distance apart void reverse(int arr[], int n, int k, int m) { // increment i in multiples of k + m for (int i = 0; i < n; i += k + m) { int left = i; // to handle case when k + m is not multiple of n int right = min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) swap(arr[left++], arr[right--]); } } // Driver code int main() { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}; int k = 3; int m = 2; int n = sizeof(arr) / sizeof(arr[0]); reverse(arr, n, k, m); for (int i = 0; i < n; i++) cout << arr[i] << " "; return 0; }
Java
// java program to reverse every sub-array formed by // consecutive k elements at given distance apart class GFG { // Function to reverse every sub-array formed by // consecutive k elements at m distance apart static void reverse(int[] arr, int n, int k, int m) { // increment i in multiples of k + m for (int i = 0; i < n; i += k + m) { int left = i; // to handle case when k + m is not multiple of n int right = Math.min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) swap(arr,left++, right--); } } static int[] swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; return arr; } // Driver code public static void main(String[] args) { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}; int k = 3; int m = 2; int n = arr.length; reverse(arr, n, k, m ); for (int i = 0; i < n; i++) { System.out.print(arr[i] + " "); } } } // This code has been contributed by Rajput-Ji
Python3
# Python3 program to reverse every # sub-array formed by consecutive # k elements at given distance apart # Function to reverse every # sub-array formed by consecutive # k elements at m distance apart def reverse(arr, n, k, m): # increment i in multiples of k + m for i in range(0, n, k + m): left = i; # to handle case when k + m # is not multiple of n right = min(i + k - 1, n - 1); # reverse the sub-array [left, right] while (left < right): arr = swap(arr,left, right); left += 1; right -= 1; return arr; def swap(arr, i, j): temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; return arr; # Driver code arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]; k = 3; m = 2; n = len(arr); arr = reverse(arr, n, k, m ); for i in range(0, n): print(arr[i], end = " "); # This code is contributed by Rajput-Ji
C#
// C# program to reverse every sub-array // formed by consecutive k elements at // given distance apart using System; class GFG { // Function to reverse every sub-array // formed by consecutive k elements // at m distance apart static void reverse(int[] arr, int n, int k, int m) { // increment i in multiples of k + m for (int i = 0; i < n; i += k + m) { int left = i; // to handle case when k + m is // not multiple of n int right = Math.Min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) swap(arr, left++, right--); } } static int[] swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; return arr; } // Driver code public static void Main(String[] args) { int []arr = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}; int k = 3; int m = 2; int n = arr.Length; reverse(arr, n, k, m ); for (int i = 0; i < n; i++) { Console.Write(arr[i] + " "); } } } // This code is contributed by PrinciRaj1992
Javascript
<script> // javascript program to reverse every sub-array formed by // consecutive k elements at given distance apart // Function to reverse every sub-array formed by // consecutive k elements at m distance apart function reverse(arr,n,k,m) { // increment i in multiples of k + m for (let i = 0; i < n; i += k + m) { let left = i; // to handle case when k + m is not multiple of n let right = Math.min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) swap(arr,left++, right--); } } function swap(arr,i,j) { let temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; return arr; } // Driver code let arr=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]; let k = 3; let m = 2; let n = arr.length; reverse(arr, n, k, m ); for (let i = 0; i < n; i++) { document.write(arr[i] + " "); } // This code is contributed by ab2127 </script>
3 2 1 4 5 8 7 6 9 10 13 12 11 14
Variación 3 (Revertir duplicando el tamaño del grupo):
Invierta cada subarreglo formado por k elementos consecutivos donde k se duplica con cada subarreglo.
Ejemplos:
Input: arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] k = 1 Output: [1], [3, 2], [7, 6, 5, 4], [15, 14, 13, 12, 11, 10, 9, 8]
A continuación se muestra su implementación:
C++
// C++ program to reverse every sub-array formed by // consecutive k elements where k doubles itself with // every sub-array. #include <iostream> using namespace std; // Function to reverse every sub-array formed by // consecutive k elements where k doubles itself // with every sub-array. void reverse(int arr[], int n, int k) { // increment i in multiples of k where value // of k is doubled with each iteration for (int i = 0; i < n; i += k/2) { int left = i; // to handle case when number of elements in // last group is less than k int right = min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) swap(arr[left++], arr[right--]); // double value of k with each iteration k = k*2; } } // Driver code int main() { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; int k = 1; int n = sizeof(arr) / sizeof(arr[0]); reverse(arr, n, k); for (int i = 0; i < n; i++) cout << arr[i] << " "; return 0; }
Java
// Java program to reverse every sub-array // formed by consecutive k elements where // k doubles itself with every sub-array. import java.util.*; class GFG { // Function to reverse every sub-array formed by // consecutive k elements where k doubles itself // with every sub-array. static void reverse(int arr[], int n, int k) { // increment i in multiples of k where value // of k is doubled with each iteration for (int i = 0; i < n; i += k / 2) { int left = i; // to handle case when number of elements in // last group is less than k int right = Math.min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) swap(arr, left++, right--); // double value of k with each iteration k = k * 2; } } static int[] swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; return arr; } // Driver code public static void main(String[] args) { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; int k = 1; int n = arr.length; reverse(arr, n, k); for (int i = 0; i < n; i++) System.out.print(arr[i] + " "); } } // This code is contributed by 29AjayKumar
Python3
# Python3 program to reverse every # sub-array formed by consecutive # k elements where k doubles itself # with every sub-array # Function to reverse every sub-array # formed by consecutive k elements # where k doubles itself with every # sub-array def reverse(arr, n, k): i = 0 # Increment i in multiples of k where # value of k is doubled with each # iteration while (i < n): left = i # To handle case when number of elements # in last group is less than k right = min(i + k - 1, n - 1) # Reverse the sub-array [left, right] while (left < right): arr[left], arr[right] = arr[right], arr[left] left += 1 right -= 1 # Double value of k with each iteration k = k * 2 i += int(k / 2) # Driver code arr = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] k = 1 n = len(arr) reverse(arr, n, k) print(*arr, sep = ' ') # This code is contributed by avanitrachhadiya2155
C#
// C# program to reverse every sub-array // formed by consecutive k elements where // k doubles itself with every sub-array. using System; class GFG { // Function to reverse every sub-array formed by // consecutive k elements where k doubles itself // with every sub-array. static void reverse(int []arr, int n, int k) { // increment i in multiples of k where value // of k is doubled with each iteration for (int i = 0; i < n; i += k / 2) { int left = i; // to handle case when number of elements in // last group is less than k int right = Math.Min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) swap(arr, left++, right--); // double value of k with each iteration k = k * 2; } } static int[] swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; return arr; } // Driver code public static void Main(String[] args) { int []arr = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; int k = 1; int n = arr.Length; reverse(arr, n, k); for (int i = 0; i < n; i++) Console.Write(arr[i] + " "); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript program to reverse every sub-array // formed by consecutive k elements where // k doubles itself with every sub-array. // Function to reverse every sub-array formed by // consecutive k elements where k doubles itself // with every sub-array. function reverse(arr,n,k) { // increment i in multiples of k where value // of k is doubled with each iteration for (let i = 0; i < n; i += k / 2) { let left = i; // to handle case when number of elements in // last group is less than k let right = Math.min(i + k - 1, n - 1); // reverse the sub-array [left, right] while (left < right) swap(arr, left++, right--); // double value of k with each iteration k = k * 2; } } function swap(arr,i,j) { let temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; return arr; } // Driver code let arr=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]; let k = 1; let n = arr.length; reverse(arr, n, k); document.write(arr.join(" ")); // This code is contributed by unknown2108 </script>
1 3 2 7 6 5 4 15 14 13 12 11 10 9 8 16
La complejidad temporal de todas las soluciones discutidas anteriormente es O(n).
El espacio auxiliar utilizado por el programa es O(1).
Este artículo es una contribución de Aditya Goel . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA