Dado un árbol de búsqueda binario y una clave, su tarea es invertir la ruta del árbol binario.
Requisito previo: ruta inversa del árbol binario
Ejemplos:
Input : 50 / \ 30 70 / \ / \ 20 40 60 80 k = 70 Output : Inorder before reversal : 20 30 40 50 60 70 80 Inorder after reversal : 20 30 40 70 60 50 80 Input : 8 / \ 3 10 / \ \ 1 6 14 / \ / 4 7 13 k = 13 Output : Inorder before reversal : 1 3 4 6 7 8 10 13 14 Inorder after reversal : 1 3 4 6 7 13 14 8 10
Enfoque:
tome una cola y empuje todo el elemento hasta que la clave dada al final reemplace la clave de Node con el elemento frontal de la cola hasta la raíz, luego imprima en orden del árbol.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ code to demonstrate insert // operation in binary search tree #include <bits/stdc++.h> using namespace std; struct node { int key; struct node *left, *right; }; // A utility function to // create a new BST node struct node* newNode(int item) { struct node* temp = new node; temp->key = item; temp->left = temp->right = NULL; return temp; } // A utility function to // do inorder traversal of BST void inorder(struct node* root) { if (root != NULL) { inorder(root->left); cout << root->key << " "; inorder(root->right); } } // reverse tree path using queue void reversePath(struct node** node, int& key, queue<int>& q1) { /* If the tree is empty, return a new node */ if (node == NULL) return; // If the node key equal // to key then if ((*node)->key == key) { // push current node key q1.push((*node)->key); // replace first node // with last element (*node)->key = q1.front(); // remove first element q1.pop(); // return return; } // if key smaller than node key then else if (key < (*node)->key) { // push node key into queue q1.push((*node)->key); // recursive call itself reversePath(&(*node)->left, key, q1); // replace queue front to node key (*node)->key = q1.front(); // perform pop in queue q1.pop(); } // if key greater than node key then else if (key > (*node)->key) { // push node key into queue q1.push((*node)->key); // recursive call itself reversePath(&(*node)->right, key, q1); // replace queue front to node key (*node)->key = q1.front(); // perform pop in queue q1.pop(); } // return return; } /* A utility function to insert a new node with given key in BST */ struct node* insert(struct node* node, int key) { /* If the tree is empty, return a new node */ if (node == NULL) return newNode(key); /* Otherwise, recur down the tree */ if (key < node->key) node->left = insert(node->left, key); else if (key > node->key) node->right = insert(node->right, key); /* return the (unchanged) node pointer */ return node; } // Driver Program to test above functions int main() { /* Let us create following BST 50 / \ 30 70 / \ / \ 20 40 60 80 */ struct node* root = NULL; queue<int> q1; // reverse path till k int k = 80; root = insert(root, 50); insert(root, 30); insert(root, 20); insert(root, 40); insert(root, 70); insert(root, 60); insert(root, 80); cout << "Before Reverse :" << endl; // print inorder traversal of the BST inorder(root); cout << "\n"; // reverse path till k reversePath(&root, k, q1); cout << "After Reverse :" << endl; // print inorder of reverse path tree inorder(root); return 0; }
Java
// Java code to demonstrate insert // operation in binary search tree import java.util.*; class GFG { static class node { int key; node left, right; }; static node root = null; static Queue<Integer> q1; static int k; // A utility function to // create a new BST node static node newNode(int item) { node temp = new node(); temp.key = item; temp.left = temp.right = null; return temp; } // A utility function to // do inorder traversal of BST static void inorder(node root) { if (root != null) { inorder(root.left); System.out.print(root.key + " "); inorder(root.right); } } // reverse tree path using queue static void reversePath(node node) { /* If the tree is empty, return a new node */ if (node == null) return; // If the node key equal // to key then if ((node).key == k) { // push current node key q1.add((node).key); // replace first node // with last element (node).key = q1.peek(); // remove first element q1.remove(); // return return; } // if key smaller than node key then else if (k < (node).key) { // push node key into queue q1.add((node).key); // recursive call itself reversePath((node).left); // replace queue front to node key (node).key = q1.peek(); // perform pop in queue q1.remove(); } // if key greater than node key then else if (k > (node).key) { // push node key into queue q1.add((node).key); // recursive call itself reversePath((node).right); // replace queue front to node key (node).key = q1.peek(); // perform pop in queue q1.remove(); } // return return; } /* A utility function to insert a new node with given key in BST */ static node insert(node node, int key) { /* If the tree is empty, return a new node */ if (node == null) return newNode(key); /* Otherwise, recur down the tree */ if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); /* return the (unchanged) node pointer */ return node; } // Driver code public static void main(String[] args) { /* Let us create following BST 50 / \ 30 70 / \ / \ 20 40 60 80 */ q1 = new LinkedList<>(); // reverse path till k k = 80; root = insert(root, 50); root = insert(root, 30); root = insert(root, 20); root = insert(root, 40); root = insert(root, 70); root = insert(root, 60); root = insert(root, 80); System.out.print("Before Reverse :" + "\n"); // print inorder traversal of the BST inorder(root); System.out.print("\n"); // reverse path till k reversePath(root); System.out.print("After Reverse :" + "\n"); // print inorder of reverse path tree inorder(root); } } // This code is contributed by gauravrajput1
Python3
# Python3 code to demonstrate insert # operation in binary search tree class Node: # Constructor to create a new node def __init__(self, data): self.key = data self.left = None self.right = None # A utility function to # do inorder traversal of BST def inorder(root): if root != None: inorder(root.left) print(root.key, end = " ") inorder(root.right) # reverse tree path using queue def reversePath(node, key, q1): # If the tree is empty, # return a new node */ if node == None: return # If the node key equal # to key then if node.key == key: # push current node key q1.insert(0, node.key) # replace first node # with last element node.key = q1[-1] # remove first element q1.pop() # return return # if key smaller than node key then elif key < node.key: # push node key into queue q1.insert(0, node.key) # recursive call itself reversePath(node.left, key, q1) # replace queue front to node key node.key = q1[-1] # perform pop in queue q1.pop() # if key greater than node key then elif (key > node.key): # push node key into queue q1.insert(0, node.key) # recursive call itself reversePath(node.right, key, q1) # replace queue front to node key node.key = q1[-1] # perform pop in queue q1.pop() # return return # A utility function to insert #a new node with given key in BST */ def insert(node, key): # If the tree is empty, # return a new node */ if node == None: return Node(key) # Otherwise, recur down the tree */ if key < node.key: node.left = insert(node.left, key) elif key > node.key: node.right = insert(node.right, key) # return the (unchanged) node pointer */ return node # Driver Code if __name__ == '__main__': # Let us create following BST # 50 # / \ # 30 70 # / \ / \ # 20 40 60 80 */ root = None q1 = [] # reverse path till k k = 80; root = insert(root, 50) insert(root, 30) insert(root, 20) insert(root, 40) insert(root, 70) insert(root, 60) insert(root, 80) print("Before Reverse :") # print inorder traversal of the BST inorder(root) # reverse path till k reversePath(root, k, q1) print() print("After Reverse :") # print inorder of reverse path tree inorder(root) # This code is contributed by PranchalK
C#
// C# code to demonstrate insert // operation in binary search tree using System; using System.Collections.Generic; class GFG{ public class node { public int key; public node left, right; }; static node root = null; static Queue<int> q1; static int k; // A utility function to // create a new BST node static node newNode(int item) { node temp = new node(); temp.key = item; temp.left = temp.right = null; return temp; } // A utility function to // do inorder traversal of BST static void inorder(node root) { if (root != null) { inorder(root.left); Console.Write(root.key + " "); inorder(root.right); } } // Reverse tree path using queue static void reversePath(node node) { // If the tree is empty, // return a new node if (node == null) return; // If the node key equal // to key then if ((node).key == k) { // push current node key q1.Enqueue((node).key); // replace first node // with last element (node).key = q1.Peek(); // Remove first element q1.Dequeue(); // Return return; } // If key smaller than node key then else if (k < (node).key) { // push node key into queue q1.Enqueue((node).key); // Recursive call itself reversePath((node).left); // Replace queue front to node key (node).key = q1.Peek(); // Perform pop in queue q1.Dequeue(); } // If key greater than node key then else if (k > (node).key) { // push node key into queue q1.Enqueue((node).key); // Recursive call itself reversePath((node).right); // Replace queue front to node key (node).key = q1.Peek(); // Perform pop in queue q1.Dequeue(); } // Return return; } // A utility function to insert // a new node with given key in BST static node insert(node node, int key) { // If the tree is empty, // return a new node if (node == null) return newNode(key); // Otherwise, recur down the tree if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); // Return the (unchanged) node pointer return node; } // Driver code public static void Main(String[] args) { /* Let us create following BST 50 / \ 30 70 / \ / \ 20 40 60 80 */ q1 = new Queue<int>(); // Reverse path till k k = 80; root = insert(root, 50); root = insert(root, 30); root = insert(root, 20); root = insert(root, 40); root = insert(root, 70); root = insert(root, 60); root = insert(root, 80); Console.Write("Before Reverse :" + "\n"); // Print inorder traversal of the BST inorder(root); Console.Write("\n"); // Reverse path till k reversePath(root); Console.Write("After Reverse :" + "\n"); // Print inorder of reverse path tree inorder(root); } } // This code is contributed by gauravrajput1
Javascript
<script> // javascript code to demonstrate insert // operation in binary search tree class node { constructor() { this.key = 0; this.left = null; this.right = null; } }; var root = null; var q1 = []; var k = 0; // A utility function to // create a new BST node function newNode(item) { var temp = new node(); temp.key = item; temp.left = temp.right = null; return temp; } // A utility function to // do inorder traversal of BST function inorder(root) { if (root != null) { inorder(root.left); document.write(root.key + " "); inorder(root.right); } } // Reverse tree path using queue function reversePath(node) { // If the tree is empty, // return a new node if (node == null) return; // If the node key equal // to key then if ((node).key == k) { // push current node key q1.push((node).key); // replace first node // with last element (node).key = q1[0]; // Remove first element q1.shift(); // Return return; } // If key smaller than node key then else if (k < (node).key) { // push node key into queue q1.push((node).key); // Recursive call itself reversePath((node).left); // Replace queue front to node key (node).key = q1[0]; // Perform pop in queue q1.shift(); } // If key greater than node key then else if (k > (node).key) { // push node key into queue q1.push((node).key); // Recursive call itself reversePath((node).right); // Replace queue front to node key (node).key = q1[0]; // Perform pop in queue q1.shift(); } // Return return; } // A utility function to insert // a new node with given key in BST function insert(node, key) { // If the tree is empty, // return a new node if (node == null) return newNode(key); // Otherwise, recur down the tree if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); // Return the (unchanged) node pointer return node; } // Driver code /* Let us create following BST 50 / \ 30 70 / \ / \ 20 40 60 80 */ q1 = []; // Reverse path till k k = 80; root = insert(root, 50); root = insert(root, 30); root = insert(root, 20); root = insert(root, 40); root = insert(root, 70); root = insert(root, 60); root = insert(root, 80); document.write("Before Reverse :" + "<br>"); // Print inorder traversal of the BST inorder(root); document.write("<br>"); // Reverse path till k reversePath(root); document.write("After Reverse :" + "<br>"); // Print inorder of reverse path tree inorder(root); // This code is contributed by itsok. </script>
Producción:
Before Reverse : 20 30 40 50 60 70 80 After Reverse : 20 30 40 80 60 70 50
Complejidad de tiempo: O(n)
Espacio Auxiliar: O(n)
Publicación traducida automáticamente
Artículo escrito por DevanshuAgarwal y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA