Dados dos arreglos ordenados A[] y B[] que consisten en N y M enteros respectivamente, la tarea es encontrar el K -ésimo número más pequeño en el arreglo formado por el producto de todos los pares posibles del arreglo A[] y B[] respectivamente .
Ejemplos:
Entrada: A[] = {1, 2, 3}, B[] = {-1, 1}, K = 4
Salida: 1
Explicación: la array formada por el producto de dos números cualquiera de la array A[] y B [] respectivamente es prod[] = {-3, -2, -1, 1, 2, 3}. Por lo tanto, el cuarto entero más pequeño en la array prod[] es 1.Entrada: A[] = {-4, -2, 0, 3}, B[] = {1, 10}, K = 7
Salida: 3
Enfoque: el problema dado se puede resolver con la ayuda de la búsqueda binaria sobre todos los valores posibles de los productos. El enfoque discutido aquí es muy similar al enfoque discutido en este artículo . A continuación se detallan los pasos a seguir:
- Cree una función check(key) , que devuelva si el número de elementos más pequeños que la clave en la array de productos es mayor que K o no. Se puede hacer usando la técnica de dos punteros similar al algoritmo discutido en el artículo aquí .
- Realice una búsqueda binaria en el rango [INT_MIN, INT_MAX] para encontrar el número más pequeño y tal que el número de elementos más pequeños que ans en la array de productos sea al menos K .
- Después de completar los pasos anteriores, imprima el valor de ans como resultado.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; #define int long long // Function to check if count of elements // greater than req in product array are // more than K or not bool check(int req, vector<int> posA, vector<int> posB, vector<int> negA, vector<int> negB, int K) { // Stores the count of numbers less // than or equal to req int cnt = 0; // Case with both elements of A[] and // B[] are negative int first = 0; int second = negB.size() - 1; // Count number of pairs formed from // array A[] and B[] with both elements // negative and there product <= req while (first < negA.size()) { while (second >= 0 && negA[first] * negB[second] <= req) second--; // Update cnt cnt += negB.size() - second - 1; first++; } // Case with both elements of A[] and // B[] are positive first = 0; second = posB.size() - 1; // Count number of pairs formed from // array A[] and B[] with both elements // positive and there product <= req while (first < posA.size()) { while (second >= 0 && posA[first] * posB[second] > req) second--; // Update cnt cnt += second + 1; first++; } // Case with elements of A[] and B[] // as positive and negative respectively first = posA.size() - 1; second = negB.size() - 1; // Count number of pairs formed from // +ve integers of A[] and -ve integer // of array B[] product <= req while (second >= 0) { while (first >= 0 && posA[first] * negB[second] <= req) first--; // Update cnt cnt += posA.size() - first - 1; second--; } // Case with elements of A[] and B[] // as negative and positive respectively first = negA.size() - 1; second = posB.size() - 1; // Count number of pairs formed from // -ve and +ve integers from A[] and // B[] with product <= req for (; first >= 0; first--) { while (second >= 0 && negA[first] * posB[second] <= req) second--; // Update cnt cnt += posB.size() - second - 1; } // Return Answer return (cnt >= K); } // Function to find the Kth smallest // number in array formed by product of // any two elements from A[] and B[] int kthSmallestProduct(vector<int>& A, vector<int>& B, int K) { vector<int> posA, negA, posB, negB; // Loop to iterate array A[] for (const auto& it : A) { if (it >= 0) posA.push_back(it); else negA.push_back(it); } // Loop to iterate array B[] for (const auto& it : B) if (it >= 0) posB.push_back(it); else negB.push_back(it); // Stores the lower and upper bounds // of the binary search int l = LLONG_MIN, r = LLONG_MAX; // Stores the final answer int ans; // Find the kth smallest integer // using binary search while (l <= r) { // Stores the mid int mid = (l + r) / 2; // If the number of elements // greater than mid in product // array are more than K if (check(mid, posA, posB, negA, negB, K)) { ans = mid; r = mid - 1; } else { l = mid + 1; } } // Return answer return ans; } // Driver Code int32_t main() { vector<int> A = { -4, -2, 0, 3 }; vector<int> B = { 1, 10 }; int K = 7; cout << kthSmallestProduct(A, B, K); return 0; }
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to check if count of elements // greater than req in product array are // more than K or not static boolean check(int req, Vector<Integer> posA, Vector<Integer> posB, Vector<Integer> negA, Vector<Integer> negB, int K) { // Stores the count of numbers less // than or equal to req int cnt = 0; // Case with both elements of A[] and // B[] are negative int first = 0; int second = negB.size() - 1; // Count number of pairs formed from // array A[] and B[] with both elements // negative and there product <= req while (first < negA.size()) { while (second >= 0 && negA.elementAt(first) * negB.elementAt(second) <= req) second--; // Update cnt cnt += negB.size() - second - 1; first++; } // Case with both elements of A[] and // B[] are positive first = 0; second = posB.size() - 1; // Count number of pairs formed from // array A[] and B[] with both elements // positive and there product <= req while (first < posA.size()) { while (second >= 0 && posA.elementAt(first) * posB.elementAt(second) > req) second--; // Update cnt cnt += second + 1; first++; } // Case with elements of A[] and B[] // as positive and negative respectively first = posA.size() - 1; second = negB.size() - 1; // Count number of pairs formed from // +ve integers of A[] and -ve integer // of array B[] product <= req while (second >= 0) { while (first >= 0 && posA.elementAt(first) * negB.elementAt(second) <= req) first--; // Update cnt cnt += posA.size() - first - 1; second--; } // Case with elements of A[] and B[] // as negative and positive respectively first = negA.size() - 1; second = posB.size() - 1; // Count number of pairs formed from // -ve and +ve integers from A[] and // B[] with product <= req for (; first >= 0; first--) { while (second >= 0 && negA.elementAt(first) * posB.elementAt(second) <= req) second--; // Update cnt cnt += posB.size() - second - 1; } // Return Answer return (cnt >= K); } // Function to find the Kth smallest // number in array formed by product of // any two elements from A[] and B[] static int kthSmallestProduct(int[] A, int[] B, int K) { Vector<Integer> posA = new Vector<>(); Vector<Integer> negA = new Vector<>(); Vector<Integer> posB = new Vector<>(); Vector<Integer> negB = new Vector<>(); // Loop to iterate array A[] for (int it : A) { if (it >= 0) posA.add(it); else negA.add(it); } // Loop to iterate array B[] for (int it : B) if (it >= 0) posB.add(it); else negB.add(it); // Stores the lower and upper bounds // of the binary search int l = Integer.MIN_VALUE, r = Integer.MAX_VALUE; // Stores the final answer int ans=0; // Find the kth smallest integer // using binary search while (l <= r) { // Stores the mid int mid = (l + r) / 2; // If the number of elements // greater than mid in product // array are more than K if (check(mid, posA, posB, negA, negB, K)) { ans = mid; r = mid - 1; } else { l = mid + 1; } } // Return answer return ans; } // Driver Code public static void main(String[] args) { int[] A = { -4, -2, 0, 3 }; int[] B = { 1, 10 }; int K = 7; System.out.print(kthSmallestProduct(A, B, K)); } } // This code is contributed by gauravrajput1
Python3
# python program for the above approach LLONG_MAX = 9223372036854775807 LLONG_MIN = -9223372036854775807 # Function to check if count of elements # greater than req in product array are # more than K or not def check(req, posA, posB, negA, negB, K): # Stores the count of numbers less # than or equal to req cnt = 0 # Case with both elements of A[] and # B[] are negative first = 0 second = len(negB) - 1 # Count number of pairs formed from # array A[] and B[] with both elements # negative and there product <= req while (first < len(negA)): while (second >= 0 and negA[first] * negB[second] <= req): second -= 1 # Update cnt cnt += len(negB) - second - 1 first += 1 # Case with both elements of A[] and # B[] are positive first = 0 second = len(posB) - 1 # Count number of pairs formed from # array A[] and B[] with both elements # positive and there product <= req while (first < len(posA)): while (second >= 0 and posA[first] * posB[second] > req): second -= 1 # Update cnt cnt += second + 1 first += 1 # Case with elements of A[] and B[] # as positive and negative respectively first = len(posA) - 1 second = len(negB) - 1 # Count number of pairs formed from # +ve integers of A[] and -ve integer # of array B[] product <= req while (second >= 0): while (first >= 0 and posA[first] * negB[second] <= req): first -= 1 # Update cnt cnt += len(posA) - first - 1 second -= 1 # Case with elements of A[] and B[] # as negative and positive respectively first = len(negA) - 1 second = len(posB) - 1 # Count number of pairs formed from # -ve and +ve integers from A[] and # B[] with product <= req for first in range(first, -1, -1): while (second >= 0 and negA[first] * posB[second] <= req): second -= 1 # Update cnt cnt += len(posB) - second - 1 # Return Answer return (cnt >= K) # Function to find the Kth smallest # number in array formed by product of # any two elements from A[] and B[] def kthSmallestProduct(A, B, K): posA = [] negA = [] posB = [] negB = [] # Loop to iterate array A[] for it in A: if (it >= 0): posA.append(it) else: negA.append(it) # Loop to iterate array B[] for it in B: if (it >= 0): posB.append(it) else: negB.append(it) # Stores the lower and upper bounds # of the binary search l = LLONG_MIN r = LLONG_MAX # Stores the final answer ans = 0 # Find the kth smallest integer # using binary search while (l <= r): # Stores the mid mid = (l + r) // 2 # If the number of elements # greater than mid in product # array are more than K if (check(mid, posA, posB, negA, negB, K)): ans = mid r = mid - 1 else: l = mid + 1 # Return answer return ans # Driver Code if __name__ == "__main__": A = [-4, -2, 0, 3] B = [1, 10] K = 7 print(kthSmallestProduct(A, B, K)) # This code is contributed by rakeshsahni
C#
// C# program for the above approach using System; using System.Collections.Generic; public class GFG { // Function to check if count of elements // greater than req in product array are // more than K or not static bool check(int req, List<int> posA, List<int> posB, List<int> negA, List<int> negB, int K) { // Stores the count of numbers less // than or equal to req int cnt = 0; // Case with both elements of []A and // []B are negative int first = 0; int second = negB.Count - 1; // Count number of pairs formed from // array []A and []B with both elements // negative and there product <= req while (first < negA.Count) { while (second >= 0 && negA[first] * negB[second] <= req) second--; // Update cnt cnt += negB.Count - second - 1; first++; } // Case with both elements of []A and // []B are positive first = 0; second = posB.Count - 1; // Count number of pairs formed from // array []A and []B with both elements // positive and there product <= req while (first < posA.Count) { while (second >= 0 && posA[first] * posB[second] > req) second--; // Update cnt cnt += second + 1; first++; } // Case with elements of []A and []B // as positive and negative respectively first = posA.Count - 1; second = negB.Count - 1; // Count number of pairs formed from // +ve integers of []A and -ve integer // of array []B product <= req while (second >= 0) { while (first >= 0 && posA[first] * negB[second] <= req) first--; // Update cnt cnt += posA.Count - first - 1; second--; } // Case with elements of []A and []B // as negative and positive respectively first = negA.Count - 1; second = posB.Count - 1; // Count number of pairs formed from // -ve and +ve integers from []A and // []B with product <= req for (; first >= 0; first--) { while (second >= 0 && negA[first]* posB[second]<= req) second--; // Update cnt cnt += posB.Count - second - 1; } // Return Answer return (cnt >= K); } // Function to find the Kth smallest // number in array formed by product of // any two elements from []A and []B static int kthSmallestProduct(int[] A, int[] B, int K) { List<int> posA = new List<int>(); List<int> negA = new List<int>(); List<int> posB = new List<int>(); List<int> negB = new List<int>(); // Loop to iterate array []A foreach (int it in A) { if (it >= 0) posA.Add(it); else negA.Add(it); } // Loop to iterate array []B foreach (int it in B) if (it >= 0) posB.Add(it); else negB.Add(it); // Stores the lower and upper bounds // of the binary search int l = int.MinValue, r = int.MaxValue; // Stores the readonly answer int ans = 0; // Find the kth smallest integer // using binary search while (l <= r) { // Stores the mid int mid = (l + r) / 2; // If the number of elements // greater than mid in product // array are more than K if (check(mid, posA, posB, negA, negB, K)) { ans = mid; r = mid - 1; } else { l = mid + 1; } } // Return answer return ans; } // Driver Code public static void Main(String[] args) { int[] A = { -4, -2, 0, 3 }; int[] B = { 1, 10 }; int K = 7; Console.Write(kthSmallestProduct(A, B, K)); } } // This code is contributed by gauravrajput1
Javascript
<script> // Javascript program for the above approach // Function to check if count of elements // greater than req in product array are // more than K or not function check(req, posA, posB, negA, negB, K) { // Stores the count of numbers less // than or equal to req let cnt = 0; // Case with both elements of A[] and // B[] are negative let first = 0; let second = negB.length - 1; // Count number of pairs formed from // array A[] and B[] with both elements // negative and there product <= req while (first < negA.length) { while (second >= 0 && negA[first] * negB[second] <= req) second--; // Update cnt cnt += negB.length - second - 1; first++; } // Case with both elements of A[] and // B[] are positive first = 0; second = posB.length - 1; // Count number of pairs formed from // array A[] and B[] with both elements // positive and there product <= req while (first < posA.length) { while (second >= 0 && posA[first] * posB[second] > req) second--; // Update cnt cnt += second + 1; first++; } // Case with elements of A[] and B[] // as positive and negative respectively first = posA.length - 1; second = negB.length - 1; // Count number of pairs formed from // +ve integers of A[] and -ve integer // of array B[] product <= req while (second >= 0) { while (first >= 0 && posA[first] * negB[second] <= req) first--; // Update cnt cnt += posA.length - first - 1; second--; } // Case with elements of A[] and B[] // as negative and positive respectively first = negA.length - 1; second = posB.length - 1; // Count number of pairs formed from // -ve and +ve integers from A[] and // B[] with product <= req for (; first >= 0; first--) { while (second >= 0 && negA[first] * posB[second] <= req) second--; // Update cnt cnt += posB.length - second - 1; } // Return Answer return cnt >= K; } // Function to find the Kth smallest // number in array formed by product of // any two elements from A[] and B[] function kthSmallestProduct(A, B, K) { let posA = [], negA = [], posB = [], negB = []; // Loop to iterate array A[] for (it of A) { if (it >= 0) posA.push(it); else negA.push(it); } // Loop to iterate array B[] for (it of B) if (it >= 0) posB.push(it); else negB.push(it); // Stores the lower and upper bounds // of the binary search let l = Number.MIN_SAFE_INTEGER, r = Number.MAX_SAFE_INTEGER; // Stores the final answer let ans; // Find the kth smallest integer // using binary search while (l <= r) { // Stores the mid let mid = (l + r) / 2; // If the number of elements // greater than mid in product // array are more than K if (check(mid, posA, posB, negA, negB, K)) { ans = mid; r = mid - 1; } else { l = mid + 1; } } // Return answer return ans; } // Driver Code let A = [-4, -2, 0, 3]; let B = [1, 10]; let K = 7; document.write(kthSmallestProduct(A, B, K)); // This code is contributed by gfgking. </script>
3
Complejidad de tiempo: O((N+M)*log 2 64 ) o O((N+M)*64)
Espacio auxiliar: O(N+M)