Dada una array binaria de tamaño N * M , la tarea es encontrar la subarray de mayor área tal que todos los elementos en ella sean iguales, es decir, todos son 0 o todos son 1 . Imprima el área más grande posible de dicha array.
Ejemplos:
Entrada: mat[][] = {
{1, 1, 0, 1, 0, 0, 0, 0},
{0, 1, 1, 1, 1, 0, 0, 1},
{1, 0, 0, 1, 1, 1, 0, 0},
{0, 1, 1, 0, 1, 1, 0, 0},
{1, 0, 1, 1, 1, 1, 1, 0},
{ 0, 0, 1, 1, 1, 1, 1, 1} }
Salida: 10
La subarray más grande con todos los elementos iguales comienza desde
mat[4][2] (esquina superior izquierda) y termina mat[5][6] (borrom-esquina derecha).Entrada: mat[][] = {
{1, 0},
{0, 1}}
Salida: 1
Acercarse:
- Intente encontrar la subarray más grande con todos los 1 y lo mismo se puede aplicar para encontrar la subarray más grande con todos los 0 .
- Mantenga una array dp[N][M] , donde dp[i][j] representa el número de 1 consecutivos presentes en la j -ésima columna a partir de la i -ésima fila hasta la última fila. Esta array se puede llenar fácilmente recorriendo cada columna de abajo hacia arriba.
- Ahora utilice el hecho de que para cada fila i , dp[i][j] representa los 1 consecutivos más grandes hasta la última fila en la j -ésima columna. Este problema ahora es el mismo que el problema de encontrar el rectángulo de área más grande presente en el histograma que se ha discutido en este artículo.
- El enfoque mencionado en el enfoque anterior debe aplicarse para cada fila de la array para encontrar la subarray de área máxima.
Lo mismo se puede aplicar para encontrar la subarray de área máxima con todos 0.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> #define row 6 #define col 8 using namespace std; // Function to find the maximum rectangular // area under given histogram with n bars int cal(int hist[], int n) { // Create an empty stack. The stack holds indexes // of hist[] array. The bars stored in stack are // always in increasing order of their heights. stack<int> s; // Initialize max area int max_area = 0; // To store top of the stack int tp; // To store area with top bar int area_with_top; // as the smallest bar // Run through all bars of given histogram int i = 0; while (i < n) { // If this bar is higher than the bar on top // stack, push it to stack if (s.empty() || hist[s.top()] <= hist[i]) s.push(i++); // If this bar is lower than top of stack, // then calculate area of rectangle with stack // top as the smallest (or minimum height) bar. // 'i' is 'right index' for the top and element // before top in stack is 'left index' else { // Store the top index tp = s.top(); // Pop the top s.pop(); // Calculate the area with hist[tp] stack // as smallest bar area_with_top = hist[tp] * (s.empty() ? i : i - s.top() - 1); // Update max area, if needed if (max_area < area_with_top) max_area = area_with_top; } } // Now pop the remaining bars from stack and calculate // area with every popped bar as the smallest bar while (s.empty() == false) { tp = s.top(); s.pop(); area_with_top = hist[tp] * (s.empty() ? i : i - s.top() - 1); if (max_area < area_with_top) max_area = area_with_top; } return max_area; } // Function to find largest sub matrix // with all equal elements int largestMatrix(int a[][col]) { // To find largest sub matrix // with all elements 1 int dp[row][col]; // Fill dp[][] by traversing each // column from bottom to up for (int i = 0; i < col; i++) { int cnt = 0; for (int j = row - 1; j >= 0; j--) { dp[j][i] = 0; if (a[j][i] == 1) { cnt++; dp[j][i] = cnt; } else { cnt = 0; } } } int ans = -1; for (int i = 0; i < row; i++) { // Maintain the histogram array int hist[col]; for (int j = 0; j < col; j++) { hist[j] = dp[i][j]; } // Find maximum area rectangle in Histogram ans = max(ans, cal(hist, col)); } // To fill dp[][] for finding largest // sub matrix with all elements 0 for (int i = 0; i < col; i++) { int cnt = 0; for (int j = row - 1; j >= 0; j--) { dp[j][i] = 0; if (a[j][i] == 0) { cnt++; dp[j][i] = cnt; } else { cnt = 0; } } } for (int i = 0; i < row; i++) { // Maintain the histogram array int hist[col]; for (int j = 0; j < col; j++) { hist[j] = dp[i][j]; } // Find maximum area rectangle in Histogram ans = max(ans, cal(hist, col)); } return ans; } // Driver code int main() { int a[row][col] = { { 1, 1, 0, 1, 0, 0, 0, 0 }, { 0, 1, 1, 1, 1, 0, 0, 1 }, { 1, 0, 0, 1, 1, 1, 0, 0 }, { 0, 1, 1, 0, 1, 1, 0, 0 }, { 1, 0, 1, 1, 1, 1, 1, 0 }, { 0, 0, 1, 1, 1, 1, 1, 1 } }; cout << largestMatrix(a); return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { static int row = 6; static int col = 8; // Function to find the maximum rectangular // area under given histogram with n bars static int cal(int hist[], int n) { // Create an empty stack. The stack holds indexes // of hist[] array. The bars stored in stack are // always in increasing order of their heights. Stack<Integer> s = new Stack<>(); // Initialize max area int max_area = 0; // To store top of the stack int tp; // To store area with top bar int area_with_top; // as the smallest bar // Run through all bars of given histogram int i = 0; while (i < n) { // If this bar is higher than the bar on top // stack, push it to stack if (s.empty() || hist[s.peek()] <= hist[i]) s.push(i++); // If this bar is lower than top of stack, // then calculate area of rectangle with stack // top as the smallest (or minimum height) bar. // 'i' is 'right index' for the top and element // before top in stack is 'left index' else { // Store the top index tp = s.peek(); // Pop the top s.pop(); // Calculate the area with hist[tp] stack // as smallest bar area_with_top = hist[tp] * (s.empty() ? i : i - s.peek() - 1); // Update max area, if needed if (max_area < area_with_top) max_area = area_with_top; } } // Now pop the remaining bars from stack and calculate // area with every popped bar as the smallest bar while (s.empty() == false) { tp = s.peek(); s.pop(); area_with_top = hist[tp] * (s.empty() ? i : i - s.peek() - 1); if (max_area < area_with_top) max_area = area_with_top; } return max_area; } // Function to find largest sub matrix // with all equal elements static int largestMatrix(int a[][]) { // To find largest sub matrix // with all elements 1 int [][]dp = new int[row][col]; // Fill dp[][] by traversing each // column from bottom to up for (int i = 0; i < col; i++) { int cnt = 0; for (int j = row - 1; j >= 0; j--) { dp[j][i] = 0; if (a[j][i] == 1) { cnt++; dp[j][i] = cnt; } else { cnt = 0; } } } int ans = -1; for (int i = 0; i < row; i++) { // Maintain the histogram array int []hist = new int[col]; for (int j = 0; j < col; j++) { hist[j] = dp[i][j]; } // Find maximum area rectangle in Histogram ans = Math.max(ans, cal(hist, col)); } // To fill dp[][] for finding largest // sub matrix with all elements 0 for (int i = 0; i < col; i++) { int cnt = 0; for (int j = row - 1; j >= 0; j--) { dp[j][i] = 0; if (a[j][i] == 0) { cnt++; dp[j][i] = cnt; } else { cnt = 0; } } } for (int i = 0; i < row; i++) { // Maintain the histogram array int []hist = new int[col]; for (int j = 0; j < col; j++) { hist[j] = dp[i][j]; } // Find maximum area rectangle in Histogram ans = Math.max(ans, cal(hist, col)); } return ans; } // Driver code public static void main(String[] args) { int a[][] = {{ 1, 1, 0, 1, 0, 0, 0, 0 }, { 0, 1, 1, 1, 1, 0, 0, 1 }, { 1, 0, 0, 1, 1, 1, 0, 0 }, { 0, 1, 1, 0, 1, 1, 0, 0 }, { 1, 0, 1, 1, 1, 1, 1, 0 }, { 0, 0, 1, 1, 1, 1, 1, 1 }}; System.out.println(largestMatrix(a)); } } // This code is contributed by PrinciRaj1992
Python3
# Python 3 implementation of the approach row = 6 col = 8 # Function to find the maximum rectangular # area under given histogram with n bars def cal(hist, n): # Create an empty stack. The stack holds indexes # of hist[] array. The bars stored in stack are # always in increasing order of their heights. s = []; # Initialize max area max_area = 0 # Run through all bars of given histogram i = 0 while (i < n) : # If this bar is higher than the bar on top # stack, push it to stack if (len(s) == 0 or( hist[s[-1]] <= hist[i])): s.append(i) i += 1 # If this bar is lower than top of stack, # then calculate area of rectangle with stack # top as the smallest (or minimum height) bar. # 'i' is 'right index' for the top and element # before top in stack is 'left index' else : # Store the top index tp = s[-1] # Pop the top s.pop() # Calculate the area with hist[tp] stack # as smallest bar if len(s) == 0: area_with_top = hist[tp]*i else: area_with_top = hist[tp]*(i -s[-1] - 1) # Update max area, if needed if (max_area < area_with_top): max_area = area_with_top # Now pop the remaining bars from stack and calculate # area with every popped bar as the smallest bar while (len(s)!=0): tp = s[-1] s.pop() if len(s)==0: area_with_top = hist[tp]*i else: area_with_top = hist[tp]*(i - s[-1] - 1) if (max_area < area_with_top): max_area = area_with_top return max_area # Function to find largest sub matrix # with all equal elements def largestMatrix(a): # To find largest sub matrix # with all elements 1 dp = [[ 0 for x in range(col)] for y in range(row)] # Fill dp[][] by traversing each # column from bottom to up for i in range(col): cnt = 0 for j in range( row - 1, -1 ,-1): dp[j][i] = 0 if (a[j][i] == 1) : cnt+=1 dp[j][i] = cnt else : cnt = 0 # print("cnt ",cnt) ans = -1 for i in range( row ): # Maintain the histogram array hist = [0]*col for j in range(col): hist[j] = dp[i][j] # Find maximum area rectangle in Histogram ans = max(ans, cal(hist, col)) # To fill dp[][] for finding largest # sub matrix with all elements 0 for i in range( col): cnt = 0 for j in range( row - 1, -1 ,-1): dp[j][i] = 0 if (a[j][i] == 0): cnt +=1 dp[j][i] = cnt else: cnt = 0 for i in range( row) : # Maintain the histogram array hist = [0]*col for j in range(col): hist[j] = dp[i][j] # Find maximum area rectangle in Histogram ans = max(ans, cal(hist, col)) return ans # Driver code if __name__ == "__main__": a = [ [1, 1, 0, 1, 0, 0, 0, 0 ], [ 0, 1, 1, 1, 1, 0, 0, 1 ], [ 1, 0, 0, 1, 1, 1, 0, 0 ], [ 0, 1, 1, 0, 1, 1, 0, 0 ], [ 1, 0, 1, 1, 1, 1, 1, 0 ], [ 0, 0, 1, 1, 1, 1, 1, 1 ]] print(largestMatrix(a)) # This code is contributed by chitranayal
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { static int row = 6; static int col = 8; // Function to find the maximum rectangular // area under given histogram with n bars static int cal(int []hist, int n) { // Create an empty stack. The stack holds indexes // of hist[] array. The bars stored in stack are // always in increasing order of their heights. Stack<int> s = new Stack<int>(); // Initialize max area int max_area = 0; // To store top of the stack int tp; // To store area with top bar int area_with_top; // as the smallest bar // Run through all bars of given histogram int i = 0; while (i < n) { // If this bar is higher than the bar on top // stack, push it to stack if (s.Count == 0 || hist[s.Peek()] <= hist[i]) s.Push(i++); // If this bar is lower than top of stack, // then calculate area of rectangle with stack // top as the smallest (or minimum height) bar. // 'i' is 'right index' for the top and element // before top in stack is 'left index' else { // Store the top index tp = s.Peek(); // Pop the top s.Pop(); // Calculate the area with hist[tp] stack // as smallest bar area_with_top = hist[tp] * (s.Count == 0 ? i : i - s.Peek() - 1); // Update max area, if needed if (max_area < area_with_top) max_area = area_with_top; } } // Now pop the remaining bars from stack and calculate // area with every popped bar as the smallest bar while (s.Count == 0 == false) { tp = s.Peek(); s.Pop(); area_with_top = hist[tp] * (s.Count == 0 ? i : i - s.Peek() - 1); if (max_area < area_with_top) max_area = area_with_top; } return max_area; } // Function to find largest sub matrix // with all equal elements static int largestMatrix(int [,]a) { // To find largest sub matrix // with all elements 1 int [,]dp = new int[row, col]; // Fill dp[,] by traversing each // column from bottom to up for (int i = 0; i < col; i++) { int cnt = 0; for (int j = row - 1; j >= 0; j--) { dp[j, i] = 0; if (a[j, i] == 1) { cnt++; dp[j, i] = cnt; } else { cnt = 0; } } } int ans = -1; for (int i = 0; i < row; i++) { // Maintain the histogram array int []hist = new int[col]; for (int j = 0; j < col; j++) { hist[j] = dp[i, j]; } // Find maximum area rectangle in Histogram ans = Math.Max(ans, cal(hist, col)); } // To fill dp[,] for finding largest // sub matrix with all elements 0 for (int i = 0; i < col; i++) { int cnt = 0; for (int j = row - 1; j >= 0; j--) { dp[j, i] = 0; if (a[j, i] == 0) { cnt++; dp[j, i] = cnt; } else { cnt = 0; } } } for (int i = 0; i < row; i++) { // Maintain the histogram array int []hist = new int[col]; for (int j = 0; j < col; j++) { hist[j] = dp[i, j]; } // Find maximum area rectangle in Histogram ans = Math.Max(ans, cal(hist, col)); } return ans; } // Driver code public static void Main(String[] args) { int [,]a = {{ 1, 1, 0, 1, 0, 0, 0, 0 }, { 0, 1, 1, 1, 1, 0, 0, 1 }, { 1, 0, 0, 1, 1, 1, 0, 0 }, { 0, 1, 1, 0, 1, 1, 0, 0 }, { 1, 0, 1, 1, 1, 1, 1, 0 }, { 0, 0, 1, 1, 1, 1, 1, 1 }}; Console.WriteLine(largestMatrix(a)); } } // This code is contributed by 29AjayKumar
Javascript
<script> // Javascript implementation of the approach let row = 6; let col = 8; // Function to find the maximum rectangular // area under given histogram with n bars function cal(hist, n) { // Create an empty stack. The stack holds indexes // of hist[] array. The bars stored in stack are // always in increasing order of their heights. let s = []; // Initialize max area let max_area = 0; // To store top of the stack let tp; // To store area with top bar let area_with_top; // as the smallest bar // Run through all bars of given histogram let i = 0; while (i < n) { // If this bar is higher than the bar on top // stack, push it to stack if (s.length == 0 || hist[s[s.length - 1]] <= hist[i]) s.push(i++); // If this bar is lower than top of stack, // then calculate area of rectangle with stack // top as the smallest (or minimum height) bar. // 'i' is 'right index' for the top and element // before top in stack is 'left index' else { // Store the top index tp = s[s.length - 1]; // Pop the top s.pop(); // Calculate the area with hist[tp] stack // as smallest bar area_with_top = hist[tp] * (s.length == 0 ? i : i - s[s.length - 1] - 1); // Update max area, if needed if (max_area < area_with_top) max_area = area_with_top; } } // Now pop the remaining bars from // stack and calculate area with // every popped bar as the smallest bar while (s.length != 0) { tp = s[s.length - 1]; s.pop(); area_with_top = hist[tp] * (s.length == 0 ? i : i - s[s.length - 1] - 1); if (max_area < area_with_top) max_area = area_with_top; } return max_area; } // Function to find largest sub matrix // with all equal elements function largestMatrix(a) { // To find largest sub matrix // with all elements 1 let dp = new Array(row); for(let i = 0; i < row; i++) { dp[i] = new Array(col); } // Fill dp[][] by traversing each // column from bottom to up for(let i = 0; i < col; i++) { let cnt = 0; for(let j = row - 1; j >= 0; j--) { dp[j][i] = 0; if (a[j][i] == 1) { cnt++; dp[j][i] = cnt; } else { cnt = 0; } } } let ans = -1; for(let i = 0; i < row; i++) { // Maintain the histogram array let hist = new Array(col); for(let j = 0; j < col; j++) { hist[j] = dp[i][j]; } // Find maximum area rectangle in Histogram ans = Math.max(ans, cal(hist, col)); } // To fill dp[][] for finding largest // sub matrix with all elements 0 for(let i = 0; i < col; i++) { let cnt = 0; for(let j = row - 1; j >= 0; j--) { dp[j][i] = 0; if (a[j][i] == 0) { cnt++; dp[j][i] = cnt; } else { cnt = 0; } } } for(let i = 0; i < row; i++) { // Maintain the histogram array let hist = new Array(col); for(let j = 0; j < col; j++) { hist[j] = dp[i][j]; } // Find maximum area rectangle in Histogram ans = Math.max(ans, cal(hist, col)); } return ans; } // Driver code let a = [ [ 1, 1, 0, 1, 0, 0, 0, 0 ], [ 0, 1, 1, 1, 1, 0, 0, 1 ], [ 1, 0, 0, 1, 1, 1, 0, 0 ], [ 0, 1, 1, 0, 1, 1, 0, 0 ], [ 1, 0, 1, 1, 1, 1, 1, 0 ], [ 0, 0, 1, 1, 1, 1, 1, 1 ]]; document.write(largestMatrix(a)); // This code is contributed by rag2127 </script>
10