La subsecuencia alterna más larga que tiene la suma máxima de elementos

Dada una lista de longitud N con enteros positivos y negativos. La tarea es elegir la subsecuencia alterna más larga de la secuencia dada (es decir, el signo de cada elemento siguiente es el opuesto al signo del elemento actual). Entre todas esas subsecuencias, tenemos que elegir una que tenga la suma máxima de elementos y mostrar esa suma.

Ejemplos:

Entrada: lista = [-2 10 3 -8 -4 -1 5 -2 -3 1] 
Salida: 11 
Explicación: 
La subsecuencia más grande con la suma más grande es [-2 10 -1 5 -2 1] con longitud 6.

Entrada: list=[12 4 -5 7 -9] 
Salida:
Explicación: 
La subsecuencia más grande con la suma más grande es [12 -5 7 -9] con longitud 4.

Enfoque: La solución se puede alcanzar mediante el siguiente enfoque:-

  • Para obtener una subsecuencia alterna con la longitud máxima y la suma más grande, recorreremos la lista completa (longitud de la lista) -1 veces para comparar signos de elementos consecutivos.
  • Durante el recorrido, si obtenemos más de 1 elemento consecutivo del mismo signo (exp. 1 2 4), agregaremos el elemento máximo de ellos a otra lista llamada large . entonces de 1 2 y 4 agregaremos 4 a otra lista.
  • Si tenemos elementos consecutivos de signo opuesto, simplemente agregaremos esos elementos a esa lista llamada large .
  • Finalmente, la lista llamada grande tendrá la subsecuencia alterna más larga con los elementos más grandes.
  • Ahora, tendremos que calcular la suma de todos los elementos de esa lista llamada large .

Tomemos un ejemplo, tenemos una lista [1, 2, 3, -2, -5, 1, -7, -1].

  1. Al recorrer esta lista de longitud 1 veces, obtenemos 1, 2, 3 con el mismo signo, por lo que agregaremos el mayor de estos (es decir, 3) a otra lista llamada grande aquí. 
    Por lo tanto grande = [3]
  2. Ahora -2 y -5 tienen el mismo signo, por lo que añadiremos -2 a otra Lista. 
    grande=[3, -2]
  3. Ahora, los signos de 1 y -7 son opuestos, por lo que agregaremos 1 a grande. 
    grande=[3, -2, 1]
  4. Para -7, -1 los signos son los mismos, por lo tanto agregue -1 a grande. 
    grande=[3, -2, 1, -1]
  5. Calcular la suma = 3 – 2 + 1 – 1 = 1

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ implementation to find the
// longest alternating subsequence
// which has the maximum sum
#include<bits/stdc++.h>
using namespace std;
 
int calculateMaxSum(int n, int li[])
{
     
    // Creating a temporary list ar to
    // every time store same sign element
    // to calculate maximum element from
    // that list ar
    vector<int> ar;
     
    // Appending 1st element of list li
    // to the ar
    ar.push_back(li[0]);
     
    // Creating list to store maximum
    // values
    vector<int> large;
 
    for(int j = 0; j < n - 1; j++)
    {
        
       // If both number are positive
       // then append (j + 1)th element
       // to temporary list ar
       if(li[j] > 0 and li[j + 1] > 0)
       {
           ar.push_back(li[j + 1]);
       }
       else if(li[j] > 0 and li[j + 1] < 0)
       {
            
           // If opposite elements found
           // then append maximum element
           // to large list
           large.push_back(*max_element(ar.begin(),
                                        ar.end()));
                                         
           // Empty ar list to re-append
           // next elements
           ar.clear();
           ar.push_back(li[j + 1]);
       }
       else if(li[j] < 0 and li[j + 1] > 0)
       {
            
           // If opposite elements found
           // then append maximum element
           // to large list
           large.push_back(*max_element(ar.begin(),
                                        ar.end()));
            
           // Empty ar list to re-append
           // next elements
           ar.clear();
           ar.push_back(li[j + 1]);
       }
       else
       {
           // If both number are negative
           // then append (j + 1)th element
           // to temporary list ar
           ar.push_back(li[j + 1]);
       }
    }
     
    // The final Maximum element in ar list
    // also needs to be appended to large list
    large.push_back(*max_element(ar.begin(),
                                 ar.end()));
     
    // Returning the sum of all elements
    // from largest elements list with
    // largest alternating subsequence size
    int sum = 0;
    for(int i = 0; i < large.size(); i++)
       sum += large[i];
    return sum;
}
     
// Driver code
int main()
{
    int list[] = { -2, 8, 3, 8, -4, -15,
                    5, -2, -3, 1 };
    int N = sizeof(list) / sizeof(list[0]);
 
    cout << (calculateMaxSum(N, list));
}
 
// This code is contributed by Bhupendra_Singh

Java

// Java implementation to find the
// longest alternating subsequence
// which has the maximum sum
import java.util.*;
 
class GFG{
 
static int calculateMaxSum(int n, int li[])
{
     
    // Creating a temporary list ar to
    // every time store same sign element
    // to calculate maximum element from
    // that list ar
    Vector<Integer> ar = new Vector<>();
     
    // Appending 1st element of list li
    // to the ar
    ar.add(li[0]);
     
    // Creating list to store maximum
    // values
    Vector<Integer> large = new Vector<>();
 
    for(int j = 0; j < n - 1; j++)
    {
         
        // If both number are positive
        // then append (j + 1)th element
        // to temporary list ar
        if(li[j] > 0 && li[j + 1] > 0)
        {
            ar.add(li[j + 1]);
        }
        else if(li[j] > 0 && li[j + 1] < 0)
        {
                 
            // If opposite elements found
            // then append maximum element
            // to large list
            large.add(Collections.max(ar));
                                             
            // Empty ar list to re-append
            // next elements
            ar.clear();
            ar.add(li[j + 1]);
        }
        else if(li[j] < 0 && li[j + 1] > 0)
        {
                 
            // If opposite elements found
            // then append maximum element
            // to large list
            large.add(Collections.max(ar));
                 
            // Empty ar list to re-append
            // next elements
            ar.clear();
            ar.add(li[j + 1]);
        }
        else
        {
            // If both number are negative
            // then append (j + 1)th element
            // to temporary list ar
            ar.add(li[j + 1]);
        }
    }
     
    // The final Maximum element in ar list
    // also needs to be appended to large list
    large.add(Collections.max(ar));
     
    // Returning the sum of all elements
    // from largest elements list with
    // largest alternating subsequence size
    int sum = 0;
    for(int i = 0; i < large.size(); i++)
        sum += (int)large.get(i);
         
    return sum;
}
 
// Driver code
public static void main(String args[])
{
    int list[] = { -2, 8, 3, 8, -4, -15,
                    5, -2, -3, 1 };
    int N = (list.length);
     
    System.out.print(calculateMaxSum(N, list));
}
}
 
// This code is contributed by Stream_Cipher

Python3

# Python3 implementation to find the
# longest alternating subsequence
# which has the maximum sum
 
def calculateMaxSum(n, li):
    # Creating a temporary list ar to every
    # time store same sign element to
    # calculate maximum element from
    # that list ar
    ar =[]
     
    # Appending 1st element of list li
    # to the ar
    ar.append(li[0])
     
    # Creating list to store maximum
    # values
    large =[]
     
    for j in range(0, n-1):
         
        # If both number are positive
        # then append (j + 1)th element
        # to temporary list ar
        if(li[j]>0 and li[j + 1]>0):
            ar.append(li[j + 1])
        elif(li[j]>0 and li[j + 1]<0):
             
            # If opposite elements found
            # then append maximum element
            # to large list
            large.append(max(ar))
             
            # Empty ar list to re-append
            # next elements 
            ar =[]
            ar.append(li[j + 1])
        elif(li[j]<0 and li[j + 1]>0):
             
            # If opposite elements found
            # then append maximum element
            # to large list
            large.append(max(ar))
             
            # Empty ar list to re-append
            # next elements
            ar =[]
            ar.append(li[j + 1])
        else:
            # If both number are negative
            # then append (j + 1)th element
            # to temporary list ar
            ar.append(li[j + 1])
             
    # The final Maximum element in ar list
    # also needs to be appended to large list
    large.append(max(ar))
     
    # returning the sum of all elements
    # from largest elements list with
    # largest alternating subsequence size
    return sum(large)
 
 
# Driver code
list =[-2, 8, 3, 8, -4, -15, 5, -2, -3, 1]
N = len(list)
 
print(calculateMaxSum(N, list))

C#

// C# implementation to find the
// longest alternating subsequence
// which has the maximum sum
using System;
using System.Collections.Generic;
 
class GFG{
 
static int find_max(List<int> ar)
{
    int mx = -1000000;
    foreach(var i in ar)
    {
        if(i > mx)
           mx = i;
    }
    return mx;
}
 
static int calculateMaxSum(int n, int []li)
{
     
    // Creating a temporary list ar to
    // every time store same sign element
    // to calculate maximum element from
    // that list ar
    List<int> ar = new List<int>();
     
    // Appending 1st element of list li
    // to the ar
    ar.Add(li[0]);
     
    // Creating list to store maximum
    // values
    List<int> large = new List<int>();
 
    for(int j = 0; j < n - 1; j++)
    {
         
        // If both number are positive
        // then append (j + 1)th element
        // to temporary list ar
        if(li[j] > 0 && li[j + 1] > 0)
        {
            ar.Add(li[j + 1]);
        }
        else if(li[j] > 0 && li[j + 1] < 0)
        {
                 
            // If opposite elements found
            // then append maximum element
            // to large list
            large.Add(find_max(ar));
                                             
            // Empty ar list to re-append
            // next elements
            ar.Clear();
            ar.Add(li[j + 1]);
        }
        else if(li[j] < 0 && li[j + 1] > 0)
        {
                 
            // If opposite elements found
            // then append maximum element
            // to large list
            large.Add(find_max(ar));
                 
            // Empty ar list to re-append
            // next elements
            ar.Clear();
            ar.Add(li[j + 1]);
        }
        else
        {
             
            // If both number are negative
            // then append (j + 1)th element
            // to temporary list ar
            ar.Add(li[j + 1]);
        }
    }
     
    // The final Maximum element in ar list
    // also needs to be appended to large list
    large.Add(find_max(ar));
     
    // Returning the sum of all elements
    // from largest elements list with
    // largest alternating subsequence size
    int sum = 0;
    foreach(var i in large)
    {
        sum += i;
    }
    return sum;
}
 
// Driver code
public static void Main()
{
    int []list = { -2, 8, 3, 8, -4, -15,
                    5, -2, -3, 1 };
    int N = (list.Length);
     
    Console.WriteLine(calculateMaxSum(N, list));
}
}
 
// This code is contributed by Stream_Cipher   

Javascript

<script>
    // Javascript implementation to find the
    // longest alternating subsequence
    // which has the maximum sum
     
    function find_max(ar)
    {
        let mx = -1000000;
        for(let i = 0; i < ar.length; i++)
        {
            if(ar[i] > mx)
               mx = ar[i];
        }
        return mx;
    }
 
    function calculateMaxSum(n, li)
    {
 
        // Creating a temporary list ar to
        // every time store same sign element
        // to calculate maximum element from
        // that list ar
        let ar = [];
 
        // Appending 1st element of list li
        // to the ar
        ar.push(li[0]);
 
        // Creating list to store maximum
        // values
        let large = [];
 
        for(let j = 0; j < n - 1; j++)
        {
 
            // If both number are positive
            // then append (j + 1)th element
            // to temporary list ar
            if(li[j] > 0 && li[j + 1] > 0)
            {
                ar.push(li[j + 1]);
            }
            else if(li[j] > 0 && li[j + 1] < 0)
            {
 
                // If opposite elements found
                // then append maximum element
                // to large list
                large.push(find_max(ar));
 
                // Empty ar list to re-append
                // next elements
                ar = [];
                ar.push(li[j + 1]);
            }
            else if(li[j] < 0 && li[j + 1] > 0)
            {
 
                // If opposite elements found
                // then append maximum element
                // to large list
                large.push(find_max(ar));
 
                // Empty ar list to re-append
                // next elements
                ar = [];
                ar.push(li[j + 1]);
            }
            else
            {
 
                // If both number are negative
                // then append (j + 1)th element
                // to temporary list ar
                ar.push(li[j + 1]);
            }
        }
 
        // The final Maximum element in ar list
        // also needs to be appended to large list
        large.push(find_max(ar));
 
        // Returning the sum of all elements
        // from largest elements list with
        // largest alternating subsequence size
        let sum = 0;
        for(let i = 0; i < large.length; i++)
        {
            sum += large[i];
        }
        return sum;
    }
     
    let list = [ -2, 8, 3, 8, -4, -15, 5, -2, -3, 1 ];
    let N = (list.length);
       
    document.write(calculateMaxSum(N, list));
     
</script>
Producción: 

6

Complejidad de tiempo: O(N)
 

Publicación traducida automáticamente

Artículo escrito por taran910 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *