Subsecuencia de palíndromo más larga con espacio O (n)

Dada una secuencia, encuentre la longitud de la subsecuencia palindrómica más larga en ella. longest-palindromic-subsequence Ejemplos:

Input : abbaab
Output : 4

Input : geeksforgeeks
Output : 5

Hemos discutido una solución de programación dinámica para la subsecuencia palindrómica más larga que se basa en la siguiente fórmula recursiva.

C++

// A Space optimized Dynamic Programming based C++
// program for LPS problem
#include <bits/stdc++.h>
using namespace std;
  
// Returns the length of the longest palindromic
// subsequence in str
int lps(string &s)
{
    int n = s.length();
  
    // a[i] is going to store length of longest
    // palindromic subsequence of substring s[0..i]
    int a[n];
  
    // Pick starting point
    for (int i = n - 1; i >= 0; i--) {
  
        int back_up = 0;
          
  
        // Pick ending points and see if s[i]
        // increases length of longest common
        // subsequence ending with s[j].
        for (int j = i; j < n; j++) {
  
            // similar to 2D array L[i][j] == 1
            // i.e., handling substrings of length
            // one.
            if (j == i)
                a[j] = 1; 
  
            // Similar to 2D array L[i][j] = L[i+1][j-1]+2
            // i.e., handling case when corner characters
            // are same. 
            else if (s[i] == s[j])
            {
                  
                // value a[j] is depend upon previous 
                // unupdated value of a[j-1] but in 
                // previous loop value of a[j-1] is 
                // changed. To store the unupdated 
                // value of a[j-1] back_up variable 
                // is used.
                int temp = a[j];
                a[j] = back_up + 2;
                back_up = temp;
            }
  
            // similar to 2D array L[i][j] = max(L[i][j-1],
            // a[i+1][j])
            else
            {
                back_up = a[j];
                a[j] = max(a[j - 1], a[j]);
            }
        }
    }
      
    return a[n - 1];
}
  
/* Driver program to test above functions */
int main()
{
    string str = "GEEKSFORGEEKS";
    cout << lps(str);
    return 0;
}

Java

// A Space optimized Dynamic Programming 
// based Java program for LPS problem
  
class GFG {
  
    // Returns the length of the longest 
    // palindromic subsequence in str
    static int lps(String s)
    {
        int n = s.length();
  
    // a[i] is going to store length
    // of longest palindromic subsequence
    // of substring s[0..i]
        int a[] = new int[n];
  
        // Pick starting point
        for (int i = n - 1; i >= 0; i--) 
            {
            int back_up = 0;
  
    // Pick ending points and see if s[i]
    // increases length of longest common
    // subsequence ending with s[j].
    for (int j = i; j < n; j++) {
  
    // similar to 2D array L[i][j] == 1
    // i.e., handling substrings of length
    // one.
        if (j == i)
        a[j] = 1;
  
    // Similar to 2D array L[i][j] = L[i+1][j-1]+2
    // i.e., handling case when corner characters
    // are same.
    else if (s.charAt(i) == s.charAt(j)) 
        {
        int temp = a[j];
        a[j] = back_up + 2;
        back_up = temp;
        }
  
    // similar to 2D array L[i][j] = max(L[i][j-1],
    // a[i+1][j])
      else   
            {
                back_up = a[j];
                a[j] = Math.max(a[j - 1], a[j]);
            }
          }
    }
    return a[n - 1];
    }
  
/* Driver program to test above functions */
    public static void main(String[] args)
    {
        String str = "GEEKSFORGEEKS";
        System.out.println(lps(str));
    }
}
  
//This article is contributed by prerna saini.

Python3

# A Space optimized Dynamic Programming 
# based Python3 program for LPS problem
  
# Returns the length of the longest 
# palindromic subsequence in str
def lps(s):
      
    n = len(s)
  
    # a[i] is going to store length
    # of longest palindromic subsequence
    # of substring s[0..i]
    a = [0] * n
  
    # Pick starting point
    for i in range(n-1, -1, -1):
  
        back_up = 0
  
    # Pick ending points and see if s[i]
    # increases length of longest common
    # subsequence ending with s[j].
        for j in range(i, n):
  
    # similar to 2D array L[i][j] == 1
    # i.e., handling substrings of length
    # one.
            if j == i: 
                a[j] = 1 
  
    # Similar to 2D array L[i][j] = L[i+1][j-1]+2
    # i.e., handling case when corner characters
    # are same. 
            elif s[i] == s[j]:
                temp = a[j]
                a[j] = back_up + 2
                back_up = temp
  
    # similar to 2D array L[i][j] = max(L[i][j-1],
    # a[i+1][j])
            else:
                back_up = a[j]
                a[j] = max(a[j - 1], a[j])
  
    return a[n - 1]
  
  
# Driver Code
string = "GEEKSFORGEEKS"
print(lps(string))
  
  
# This code is contributed by Ansu Kumari.

C#

// A Space optimized Dynamic Programming 
// based C# program for LPS problem
using System;
  
class GFG {
  
    // Returns the length of the longest 
    // palindromic subsequence in str
    static int lps(string s)
    {
        int n = s.Length;
  
    // a[i] is going to store length
    // of longest palindromic subsequence
    // of substring s[0..i]
        int []a = new int[n];
  
        // Pick starting point
        for (int i = n - 1; i >= 0; i--) 
            {
            int back_up = 0;
  
    // Pick ending points and see if s[i]
    // increases length of longest common
    // subsequence ending with s[j].
    for (int j = i; j < n; j++) {
  
    // similar to 2D array L[i][j] == 1
    // i.e., handling substrings of length
    // one.
        if (j == i)
        a[j] = 1;
  
    // Similar to 2D array L[i][j] = L[i+1][j-1]+2
    // i.e., handling case when corner characters
    // are same.
    else if (s[i] == s[j]) 
        {
        int temp = a[j];
        a[j] = back_up + 2;
        back_up = temp;
        }
  
    // similar to 2D array L[i][j] = max(L[i][j-1],
    // a[i+1][j])
    else
            {
                back_up = a[j];
                a[j] = Math.Max(a[j - 1], a[j]);
            }
        }
    }
    return a[n - 1];
    }
  
    // Driver program 
    public static void Main()
    {
        string str = "GEEKSFORGEEKS";
        Console.WriteLine(lps(str));
    }
}
  
// This code is contributed by vt_m.

PHP

<?php
// A Space optimized Dynamic
// Programming based PHP
// program for LPS problem
  
// Returns the length of 
// the longest palindromic .
// subsequence in str
function lps($s)
{
    $n = strlen($s);
  
    // Pick starting point
    for ($i = $n - 1; 
         $i >= 0; $i--) 
    {
        $back_up = 0;
          
        // Pick ending points and 
        // see if s[i] increases 
        // length of longest common
        // subsequence ending with s[j].
        for ($j = $i; $j < $n; $j++) 
        {
  
            // similar to 2D array 
            // L[i][j] == 1 i.e.,
            // handling substrings 
            // of length one.
            if ($j == $i)
                $a[$j] = 1; 
  
            // Similar to 2D array 
            // L[i][j] = L[i+1][j-1]+2
            // i.e., handling case when 
            // corner characters are same. 
            else if ($s[$i] == $s[$j])
            {
                  
                // value a[j] is depend 
                // upon previous unupdated 
                // value of a[j-1] but in 
                // previous loop value of 
                // a[j-1] is changed. To 
                // store the unupdated value
                // of a[j-1] back_up variable 
                // is used.
                $temp = $a[$j];
                $a[$j] = $back_up + 2;
                $back_up = $temp;
            }
  
            // similar to 2D array
            // L[i][j] = max(L[i][j-1],
            // a[i+1][j])
            else
            {
                $back_up = $a[$j];
                $a[$j] = max($a[$j - 1], 
                             $a[$j]);
            }
        }
    }
      
    return $a[$n - 1];
}
  
// Driver Code
$str = "GEEKSFORGEEKS";
echo lps($str);
  
// This code is contributed
// by shiv_bhakt.
?>

Javascript

<script>
  
// A Space optimized Dynamic Programming
// based Python3 program for LPS problem
  
// Returns the length of the longest
// palindromic subsequence in str
function lps(s){
      
    let n = s.length
  
    // a[i] is going to store length
    // of longest palindromic subsequence
    // of substring s[0..i]
    let a = new Array(n).fill(0);
  
    // Pick starting point
    for(let i = n - 1; i >= 0; i--){
  
        let back_up = 0
  
    // Pick ending points and see if s[i]
    // increases length of longest common
    // subsequence ending with s[j].
        for (let j = i; j < n; j++){
  
    // similar to 2D array L[i][j] == 1
    // i.e., handling substrings of length
    // one.
            if(j == i)
                a[j] = 1
  
    // Similar to 2D array L[i][j] = L[i+1][j-1]+2
    // i.e., handling case when corner characters
    // are same.
            else if(s[i] == s[j]){
                let temp = a[j]
                a[j] = back_up + 2
                back_up = temp
            }
  
    // similar to 2D array L[i][j] = max(L[i][j-1],
    // a[i+1][j])
            else{
                back_up = a[j]
                a[j] = Math.max(a[j - 1], a[j])
            }
        }
    }
  
    return a[n - 1]
}
  
// Driver Code
let string = "GEEKSFORGEEKS"
document.write(lps(string),"</br>")
  
// This code is contributed by shinjanpatra
  
</script>

Publicación traducida automáticamente

Artículo escrito por bibhudhendra y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *