Longitud de la substring más larga que no contiene ningún palíndromo

Dada una string de minúsculas, encuentre la longitud de la substring más larga que no contiene ningún palíndromo como substring.

Ejemplos:

Input : str = "daiict" 
Output : 3
dai, ict are longest substring that do not contain any 
palindrome as substring

Input : str = "a"
Output : 0
a is itself a palindrome 

La idea es observar que si algún carácter forma un palíndromo, no puede ser incluido en ninguna substring. Entonces, en ese caso, la substring requerida se seleccionará antes o después de ese carácter que forma un palíndromo. 
Por tanto, una solución sencilla es recorrer la string y, para cada carácter, comprobar si forma un palíndromo de longitud 2 o 3 con sus caracteres adyacentes. Si no es así, aumente la longitud de la substring; de lo contrario, reinicie la longitud de la substring a cero. Usando este enfoque, encuentre la longitud de la substring máxima.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length of the longest
// substring
int lenoflongestnonpalindrome(string s)
{
    // initializing the variables
    int max1 = 1, len = 0;
 
    for (int i = 0; i < s.length() - 1; i++) {
        // checking palindrome of size 2
        // example: aa
        if (s[i] == s[i + 1])
            len = 0;
        // checking palindrome of size 3
        // example: aba
        else if (s[i + 1] == s[i - 1] && i > 0)
            len = 1;
        else // incrementing length of substring
            len++;
        max1 = max(max1, len + 1); // finding maximum
    }
 
    // if there exits single character then
    // it is always palindrome
    if (max1 == 1)
        return 0;
    else
        return max1;
}
 
// Driver Code
int main()
{
    string s = "synapse";
    cout << lenoflongestnonpalindrome(s) << "\n";
    return 0;
}

Java

// Java implementation of the above approach
import java.util.Arrays;
import java.lang.Math;
 
class GFG {
 
    // Function to find the length of the longest
    // substring
    public static int lenoflongestnonpalindrome(String s)
    {
        // initializing the variables
        int max1 = 1, len = 0;
        char[] new_str = s.toCharArray();
 
        for (int i = 0; i < new_str.length - 1; i++) {
            // checking palindrome of size 2
            // example: aa
            if (new_str[i] == new_str[i + 1])
                len = 0;
            // checking palindrome of size 3
            // example: aba
            else if (i > 0 && (new_str[i + 1] == new_str[i - 1]))
                len = 1;
            else // incrementing length of substring
                len++;
            max1 = Math.max(max1, len + 1); // finding maximum
        }
 
        // if there exits single character then
        // it is always palindrome
        if (max1 == 1)
            return 0;
        else
            return max1;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        String s = "synapse";
        System.out.println(lenoflongestnonpalindrome(s));
    }
}
 
// This code is contributed by princiraj1992

Python3

# Python3 implementation of the above approach
 
# Function to find the length
# of the longest substring
def lenoflongestnonpalindrome(s):
 
    # initializing the variables
    max1, length = 1, 0
 
    for i in range(0, len(s) - 1):
         
        # checking palindrome of
        # size 2 example: aa
        if s[i] == s[i + 1]:
            length = 0
             
        # checking palindrome of
        # size 3 example: aba
        elif s[i + 1] == s[i - 1] and i > 0:
            length = 1
        else: # incrementing length of substring
            length += 1
        max1 = max(max1, length + 1) # finding maximum
 
    # If there exits single character
    # then it is always palindrome
    if max1 == 1:
        return 0
    else:
        return max1
 
# Driver Code
if __name__ == "__main__":
 
    s = "synapse"
    print(lenoflongestnonpalindrome(s))
     
# This code is contributed by Rituraj Jain

C#

// C# implementation of the above approach
using System;
     
class GFG
{
 
    // Function to find the length of the longest
    // substring
    public static int lenoflongestnonpalindrome(String s)
    {
        // initializing the variables
        int max1 = 1, len = 0;
        char[] new_str = s.ToCharArray();
 
        for (int i = 0; i < new_str.Length - 1; i++)
        {
            // checking palindrome of size 2
            // example: aa
            if (new_str[i] == new_str[i + 1])
                len = 0;
                 
            // checking palindrome of size 3
            // example: aba
            else if (i > 0 && (new_str[i + 1] == new_str[i - 1]))
                len = 1;
            else // incrementing length of substring
                len++;
            max1 = Math.Max(max1, len + 1); // finding maximum
        }
 
        // if there exits single character then
        // it is always palindrome
        if (max1 == 1)
            return 0;
        else
            return max1;
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        String s = "synapse";
        Console.WriteLine(lenoflongestnonpalindrome(s));
    }
}
 
// This code has been contributed by 29AjayKumar

PHP

<?php
// PHP implementation of the above approach
 
// Function to find the length of the longest
// substring
function lenoflongestnonpalindrome($s)
{
    // initializing the variables
    $max1 = 1; $len = 0;
 
    for ($i = 0; $i < strlen($s) - 1; $i++)
    {
        // checking palindrome of size 2
        // example: aa
        if ($s[$i] == $s[$i + 1])
            $len = 0;
             
        // checking palindrome of size 3
        // example: aba
        else if ($s[$i + 1] == $s[$i - 1] && $i > 0)
            $len = 1;
        else // incrementing length of substring
            $len++;
        $max1 = max($max1, $len + 1); // finding maximum
    }
 
    // if there exits single character then
    // it is always palindrome
    if ($max1 == 1)
        return 0;
    else
        return $max1;
}
 
// Driver Code
$s = "synapse";
echo lenoflongestnonpalindrome($s), "\n";
 
// This code is contributed by AnkitRai01
 
?>

Javascript

<script>
 
// JavaScript implementation of the above approach
 
// Function to find the length of the longest
// substring
function lenoflongestnonpalindrome(s)
{
    // initializing the variables
    let max1 = 1, len = 0;
 
    for (let i = 0; i < s.length - 1; i++) {
        // checking palindrome of size 2
        // example: aa
        if (s[i] == s[i + 1])
            len = 0;
        // checking palindrome of size 3
        // example: aba
        else if (s[i + 1] == s[i - 1] && i > 0)
            len = 1;
        else // incrementing length of substring
            len++;
        max1 = Math.max(max1, len + 1); // finding maximum
    }
 
    // if there exits single character then
    // it is always palindrome
    if (max1 == 1)
        return 0;
    else
        return max1;
}
 
// Driver Code
 
    let s = "synapse";
    document.write(lenoflongestnonpalindrome(s) + "<br>");
     
 
//This code is contributed by Manoj
</script>
Producción: 

7

 

Publicación traducida automáticamente

Artículo escrito por Sairahul Jella y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *