Longitud del prefijo de paréntesis equilibrado más largo

Dada una string de corchetes abiertos ‘(‘ y corchetes cerrados ‘)’. La tarea es encontrar la longitud del prefijo balanceado más largo. 

Ejemplos: 

C++

// CPP Program to find length of longest balanced
// parentheses prefix.
#include <bits/stdc++.h>
using namespace std;
 
// Return the length of longest balanced parentheses
// prefix.
int maxbalancedprefix(char str[], int n)
{
    int sum = 0;
    int maxi = 0;
 
    // Traversing the string.
    for (int i = 0; i < n; i++) {
 
        // If open bracket add 1 to sum.
        if (str[i] == '(')
            sum += 1;
 
        // If closed bracket subtract 1
        // from sum
        else
            sum -= 1;
 
        // if first bracket is closing bracket
        // then this condition would help
        if (sum < 0)
            break;
 
        // If sum is 0, store the index
        // value.
        if (sum == 0)
            maxi = i + 1;
    }
 
    return maxi;
}
 
// Driven Program
int main()
{
    char str[] = "((()())())((";
    int n = strlen(str);
 
    cout << maxbalancedprefix(str, n) << endl;
    return 0;
}

Java

// Java Program to find length of longest
// balanced parentheses prefix.
import java.io.*;
 
class GFG {
 
    // Return the length of longest
    // balanced parentheses prefix.
    static int maxbalancedprefix(String str, int n)
    {
        int sum = 0;
        int maxi = 0;
 
        // Traversing the string.
        for (int i = 0; i < n; i++) {
 
            // If open bracket add 1 to sum.
            if (str.charAt(i) == '(')
                sum += 1;
 
            // If closed bracket subtract 1
            // from sum
            else
                sum -= 1;
 
            // if first bracket is closing bracket
            // then this condition would help
            if (sum < 0)
                break;
 
            // If sum is 0, store the index
            // value.
            if (sum == 0)
                maxi = i + 1;
        }
 
        return maxi;
    }
 
    // Driven Program
    public static void main(String[] args)
    {
        String str = "((()())())((";
        int n = str.length();
 
        System.out.println(maxbalancedprefix(str, n));
    }
}
 
// This code is contributed by vt_m

Python3

# Python3 code to find length of
# longest balanced parentheses prefix.
 
# Function to return the length of
# longest balanced parentheses prefix.
def maxbalancedprefix (str, n):
    _sum = 0
    maxi = 0
     
    # Traversing the string.
    for i in range(n):
     
        # If open bracket add 1 to sum.
        if str[i] == '(':
            _sum += 1
         
        # If closed bracket subtract 1
        # from sum
        else:
            _sum -= 1
        
       # if first bracket is closing bracket
       # then this condition would help
        if _sum < 0:
            break
             
        # If sum is 0, store the
        # index value.
        if _sum == 0:
            maxi = i + 1
    return maxi
     
 
# Driver Code
str = '((()())())(('
n = len(str)
print(maxbalancedprefix (str, n))
 
# This code is contributed by "Abhishek Sharma 44"

C#

// C# Program to find length of longest
// balanced parentheses prefix.
using System;
 
class GFG {
 
    // Return the length of longest
    // balanced parentheses prefix.
    static int maxbalancedprefix(string str, int n)
    {
        int sum = 0;
        int maxi = 0;
 
        // Traversing the string.
        for (int i = 0; i < n; i++) {
 
            // If open bracket add 1 to sum.
            if (str[i] == '(')
                sum += 1;
 
            // If closed bracket subtract 1
            // from sum
            else
                sum -= 1;
 
            // if first bracket is closing bracket
            // then this condition would help
            if (sum < 0)
                break;
 
            // If sum is 0, store the index
            // value.
            if (sum == 0)
                maxi = i + 1;
        }
 
        return maxi;
    }
 
    // Driven Program
    public static void Main()
    {
        string str = "((()())())((";
        int n = str.Length;
 
        Console.WriteLine(maxbalancedprefix(str, n));
    }
}
 
// This code is contributed by vt_m

PHP

<?php
// PHP Program to find length
// of longest balanced
// parentheses prefix.
 
// Return the length of longest
// balanced parentheses prefix.
function maxbalancedprefix($str, $n)
{
    $sum = 0;
    $maxi = 0;
 
    // Traversing the string.
    for ($i = 0; $i <$n; $i++) {
 
        // If open bracket add 1 to sum.
        if ($str[$i] == '(')
            $sum += 1;
 
        // If closed bracket subtract 1
        // from sum
        else
            $sum -= 1;
 
 
        if ($sum < 0)
            break;
 
        // If sum is 0, store the index
        // value.
        if ($sum == 0)
            $maxi = $i+1;
    }
 
    return $maxi;
}
 
// Driver Code
$str = array('(', '(', '(', ')', '(', ')', ')', '(', ')', ')', '(', '(');
$n = count($str);
 
echo maxbalancedprefix($str, $n);
 
// This code is contributed by anuj_67..
?>

Javascript

<script>
 
// Javascript Program to find
// length of longest balanced
// parentheses prefix.
 
// Return the length of longest
// balanced parentheses
// prefix.
function maxbalancedprefix( str, n)
{
    var sum = 0;
    var maxi = 0;
 
    // Traversing the string.
    for (var i = 0; i < n; i++) {
 
        // If open bracket add 1 to sum.
        if (str[i] == '(')
            sum += 1;
 
        // If closed bracket subtract 1
        // from sum
        else
            sum -= 1;
 
        // if first bracket is closing bracket
        // then this condition would help
        if (sum < 0)
            break;
 
        // If sum is 0, store the index
        // value.
        if (sum == 0)
            maxi = i + 1;
    }
 
    return maxi;
}
 
// Driven Program
var str = "((()())())((";
var n = str.length;
document.write( maxbalancedprefix(str, n));
 
</script>

Publicación traducida automáticamente

Artículo escrito por anuj0503 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *