Mahotas – Re-etiquetado

En este artículo veremos cómo podemos reetiquetar la imagen etiquetada en mahotas. El reetiquetado se usa para etiquetar la imagen ya etiquetada, esto es necesario porque algunas veces hay etiquetas de melena que el usuario elimina, por lo que cuando esa imagen se vuelve a etiquetar, también obtenemos el nuevo número de etiqueta. Usamos el método mahotas.label para etiquetar la imagen
. Para esto, vamos a usar la imagen de microscopía fluorescente de un punto de referencia de segmentación nuclear. Podemos obtener la imagen con la ayuda del comando que se indica a continuación. 
 

mhotas.demos.nuclear_image()

A continuación se muestra la imagen_nuclear 
 

Las imágenes etiquetadas son imágenes enteras donde los valores corresponden a diferentes regiones. Es decir, la región 1 son todos los píxeles que tienen valor 1, la región dos son los píxeles con valor 2, y así sucesivamente.
Para hacer esto, usaremos el método mahotas.relabel 
 

Sintaxis: mahotas.relabel (etiquetado)
Argumento: toma el objeto de imagen etiquetado como argumento
Retorno: devuelve la imagen etiquetada y el número entero, es decir, el número de etiquetas 
 

Ejemplo 1: 
 

Python3

# importing required libraries
import mahotas
import numpy as np
from pylab import imshow, show
import os
 
# loading nuclear image
f = mahotas.demos.load('nuclear')
 
# setting filter to the image
f = f[:, :, 0]
 
# setting gaussian filter
f = mahotas.gaussian_filter(f, 4)
 
# setting threshold value
f = (f> f.mean())
 
# creating a labelled image
labelled, n_nucleus = mahotas.label(f)
 
# printing number of labels
print("Count : " + str(n_nucleus))
 
# showing the labelled image
print("Labelled Image")
imshow(labelled)
show()
 
# removing border labels
labelled = mh.labelled.remove_bordering(labelled)
 
# relabling the labelled image
relabelled, n_left = mahotas.labelled.relabel(labelled)
 
# showing number of labels
print("Count : " + str(n_left))
 
# showing the image
print("No border Label")
imshow(relabelled)
show()

Producción : 
 

Ejemplo 2: 
 

Python3

# importing required libraries
import numpy as np
import mahotas
from pylab import imshow, show
 
# loading image
img = mahotas.imread('dog_image.png')
   
# filtering the image
img = img[:, :, 0]
    
# setting gaussian filter
gaussian = mahotas.gaussian_filter(img, 15)
 
# setting threshold value
gaussian = (gaussian > gaussian.mean())
 
# creating a labelled image
labelled, n_nucleus = mahotas.label(gaussian)
 
# printing number of labels
print("Count : " + str(n_nucleus))
  
print("Labelled Image")
# showing the gaussian filter
imshow(labelled)
show()
 
# removing border labels
labelled = mh.labelled.remove_bordering(labelled)
 
# relabling the labelled image
relabelled, n_left = mahotas.labelled.relabel(labelled)
 
# showing number of labels
print("Count : " + str(n_left))
 
# showing the image
print("No border Label")
imshow(relabelled)
show()

Producción : 
 

Publicación traducida automáticamente

Artículo escrito por rakshitarora y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *