Matplotlib.axes.Axes.set_transform() en Python

Matplotlib es una biblioteca en Python y es una extensión matemática numérica para la biblioteca NumPy. La clase Axes contiene la mayoría de los elementos de la figura: Axis, Tick, Line2D, Text, Polygon, etc., y establece el sistema de coordenadas. Y las instancias de Axes admiten devoluciones de llamada a través de un atributo de devoluciones de llamada.

función matplotlib.axes.Axes.set_transform()

La función Axes.set_transform() en el módulo de ejes de la biblioteca matplotlib se usa para configurar la transformación del artista.

Sintaxis: Axes.set_transform(self, t)

Parámetros: este método acepta solo un parámetro.

  • t : Este parámetro es la Transformación.

Devoluciones: este método no devuelve ningún valor.

Los siguientes ejemplos ilustran la función matplotlib.axes.Axes.set_transform() en matplotlib.axes:

Ejemplo 1:

# Implementation of matplotlib function
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.transforms as mtransforms
  
delta = 0.25
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2)
  
transform = mtransforms.Affine2D().rotate_deg(30)
fig, ax = plt.subplots()
      
im = ax.imshow(Z, interpolation ='none',
               origin ='lower',
               extent =[-2, 4, -3, 2], 
               clip_on = True)
  
trans_data = transform + ax.transData
im.set_transform(trans_data)
  
x1, x2, y1, y2 = im.get_extent()
ax.plot([x1, x2, x2, x1, x1], 
        [y1, y1, y2, y2, y1],
        "ro-",
        transform = trans_data)
  
ax.set_xlim(-5, 5)
ax.set_ylim(-4, 4)
  
fig.suptitle('matplotlib.axes.Axes.set_transform() \
function Example\n\n', fontweight ="bold")
  
plt.show()

Producción:

Ejemplo 2:

# Implementation of matplotlib function  
import matplotlib.pyplot as plt
from matplotlib import collections, colors, transforms
import numpy as np
   
nverts = 50
npts = 100
   
r = np.arange(nverts)
theta = np.linspace(0, 2 * np.pi, nverts)
xx = r * np.sin(theta)
yy = r * np.cos(theta)
spiral = np.column_stack([xx, yy])
   
rs = np.random.RandomState(19680801)
   
xyo = rs.randn(npts, 2)
   
colors = [colors.to_rgba(c)
          for c in plt.rcParams['axes.prop_cycle'].by_key()['color']]
   
fig, ax1 = plt.subplots()
   
col = collections.RegularPolyCollection(
    7, sizes = np.abs(xx) * 10.0, 
    offsets = xyo, 
    transOffset = ax1.transData)
  
trans = transforms.Affine2D().scale(fig.dpi / 72.0)
col.set_transform(trans) 
  
ax1.add_collection(col, autolim = True)
col.set_color(colors)
   
fig.suptitle('matplotlib.axes.Axes.set_transform() function\
 Example\n', fontweight ="bold")
  
fig.canvas.draw()
  
plt.show()

Producción:

Publicación traducida automáticamente

Artículo escrito por SHUBHAMSINGH10 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *