Máximo divisor que ocurre en un intervalo

Dado un intervalo [x, y]. Encuentre el divisor que ocurre el máximo número de veces excepto ‘1’ en los divisores de números en el rango [x, y], ambos inclusive.
Ejemplos: 
 

Input : [2, 5]
Output : 2
Explanation : Divisors of 2, 3, 4, 5 except 1 are:
              2 -> 2
              3 -> 3
              4 -> 2, 4
              5 -> 5
              Among all the divisors 2 occurs 
              maximum time, i.e two times.

Input : [3, 3]
Output : 3

Enfoque de fuerza bruta : el enfoque más simple es atravesar todos los números de x a y y calcular todos sus divisores y almacenar los divisores en un mapa con sus conteos. Finalmente, recorra el mapa para encontrar el divisor que ocurre veces máximas. Puedes referirte a

C++

// Simple CPP program to find maximum occurring
// factor in an interval
#include <bits/stdc++.h>
using namespace std;
 
// function to find max occurring
// divisor in interval [x, y]
int findDivisor(int x, int y)
{
    // map to store count of divisors
    unordered_map<int, int> m;
 
    // iterate for every number in the
    // interval
    for (int num = x; num <= y; num++) {
        // find all divisors of num
        for (int i = 2; i <= sqrt(num) + 1; i++) {
            if (num % i == 0) {
 
                // If divisors are equal, print only one
                if (num / i == i) {
                    if (m.find(i) == m.end())
                        m.insert(make_pair(i, 1));
                    else
                        m[i]++;
                }
                else {
 
                    // insert first one to map
                    if (m.find(i) == m.end())
                        m.insert(make_pair(i, 1));
                    else
                        m[i]++;
 
                    // insert second to map
                    if (m.find(num / i) == m.end())
                        m.insert(make_pair(num / i, 1));
                    else
                        m[num / i]++;
                }
            }
        }
    }
 
    int divisor = 0;
    int divisorCount = INT_MIN;
 
    // iterate on map
    for (auto itr = m.begin(); itr != m.end(); itr++) {
        if (itr->second > divisorCount) {
            divisorCount = itr->second;
            divisor = itr->first;
        }
    }
 
    return divisor;
}
 
// Driver code
int main()
{
    int x = 3, y = 16;
    cout << findDivisor(x, y);
    return 0;
}

Java

// Java program to find Max
// occurring divisor in an interval
import java.io.*;
import java.util.*;
 
class GFG {
 
// function to find max occurring
// divisor in interval [x, y]
static int findDivisor(int x, int y)
{
    // map to store count of divisors
    HashMap<Integer, Integer> m = new HashMap<Integer,
                                            Integer>();
 
    // iterate for every number
    // in the interval
    for (int num = x; num <= y; num++) {
         
        // find all divisors of num
        for (int i = 2; i <= Math.sqrt(num) + 1; i++) {
            if (num % i == 0) {
 
                // If divisors are equal,
                // print only one
                if (num / i == i) {
                    if (m.containsKey(i) != true)
                        m.put(i, 1);
                    else
                        {
                            int val = m.get(i);
                            m.put(i, ++val);
                        }
                }
                else {
 
                    // insert first one to map
                    if (m.containsKey(i) != true)
                        m.put(i, 1);
                    else
                        {
                            int val=m.get(i);
                            m.put(i,++val);
                        }
 
                    // insert second to map
                    if (m.containsKey(num / i) != true)
                        m.put(num / i, 1);
                    else
                        {
                            int k = num / i;
                            int val = m.get(k);
                            m.put( k, ++val);
                        }
                }
            }
        }
    }
 
    int divisor = 0;
    int divisorCount = Integer.MIN_VALUE;
 
    // iterate on map
    for(Map.Entry<Integer, Integer> entry:m.entrySet()){
        int key = entry.getKey();
        int value = entry.getValue();
         
        if (value > divisorCount) {
            divisorCount = value;
            divisor = key;
        }
    }
 
    return divisor;
}
 
/* Driver program to test above function */
public static void main(String[] args)
{
    int x = 3, y = 16;
    System.out.println(findDivisor(x, y));
}
}
 
// This code is contributed by Gitanjali

Python

# Simple python program to find maximum
# occurring factor in an interval
import math
 
# Function to find max occurring
# divisor in interval [x, y]
def findDivisor( x, y):
    # Map to store count of divisors
    m = {}
     
    # Iterate for every number in the interval
    for num in range(x, y + 1):
         
        # Find all divisors of num
        for i in range(2, int(math.sqrt(num)) + 2):
            if (num % i == 0):
                 
                # If divisors are equal, print only one
                if (num / i == i):
                    if i not in m:
                        m[i]= 1
                    else:
                        m[i]+= 1
                 
                else:
                    # Insert first one to map
                    if (i not in m):
                        m[i]= 1
                    else:
                        m[i]= m[i]+1
 
                    # Insert second to map
                    if (num / i not in m ):
                        m[num / i]= 1
                    else:
                        m[num / i]= m[num / i]+1
                 
    divisor = 0
    divisorCount = -999999
 
    # Iterate on map
    for itr in m :
        if m[itr] > divisorCount:
            divisorCount = m[itr]
            divisor = itr
         
    return divisor
 
# Driver method
x = 3
y = 16
print (findDivisor(x, y))
 
# This code is contributed by 'Gitanjali'.

C#

// C# program to find Max
// occurring divisor in an interval
using System;
using System.Collections.Generic;
 
class GFG
{
 
// function to find max occurring
// divisor in interval [x, y]
static int findDivisor(int x, int y)
{
    // map to store count of divisors
    Dictionary<int,
               int> m = new Dictionary<int,
                                       int>();
 
    // iterate for every number
    // in the interval
    for (int num = x; num <= y; num++)
    {
         
        // find all divisors of num
        for (int i = 2; i <= Math.Sqrt(num) + 1; i++)
        {
            if (num % i == 0)
            {
 
                // If divisors are equal,
                // print only one
                if (num / i == i)
                {
                    if (m.ContainsKey(i) != true)
                        m.Add(i, 1);
                    else
                    {
                        int val = m[i];
                        m[i] = ++val;
                    }
                }
                else
                {
 
                    // insert first one to map
                    if (m.ContainsKey(i) != true)
                        m.Add(i, 1);
                    else
                    {
                        int val = m[i];
                        m[i] = ++val;
                    }
 
                    // insert second to map
                    if (m.ContainsKey(num / i) != true)
                        m.Add(num / i, 1);
                    else
                    {
                        int k = num / i;
                        int val = m[k];
                        m[k] = ++val;
                    }
                }
            }
        }
    }
 
    int divisor = 0;
    int divisorCount = int.MinValue;
 
    // iterate on map
    foreach(KeyValuePair<int, int> entry in m)
    {
        int key = entry.Key;
        int value = entry.Value;
         
        if (value > divisorCount)
        {
            divisorCount = value;
            divisor = key;
        }
    }
 
    return divisor;
}
 
// Driver Code
public static void Main(String[] args)
{
    int x = 3, y = 16;
    Console.WriteLine(findDivisor(x, y));
}
}
 
// This code is contributed by 29AjayKumar

JavaScript

// JavaScript program to find maximum occurring
// factor in an interval
 
// function to find max occurring
// divisor in interval [x, y]
function findDivisor(x, y)
{
    // map to store count of divisors
    let m = new Map();
 
    // iterate for every number in the
    // interval
    for (let num = x; num <= y; num++) {
        // find all divisors of num
        for (let i = 2; i <= Math.sqrt(num) + 1; i++) {
            if (num % i == 0) {
 
                // If divisors are equal, print only one
                if (Math.floor(num / i) == i) {
                    if (!m.has(i)){
                        m.set(i, 1);
                    }
                    else{
                        m.set(i, m.get(i) + 1);
                    }
                }
                else {
                     
                    // insert first one to map
                    if (!m.has(i))
                        m.set(i, 1);
                    else
                        m.set(i, m.get(i) + 1);
 
                    // insert second to map
                    if (!m.has(Math.floor(num / i)))
                        m.set(Math.floor(num / i), 1);
                    else
                        m.set(Math.floor(num/i), m.get(Math.floor(num/i)) + 1);
                }
            }
        }
    }
 
    let divisor = 0;
    let divisorCount = -999999;
 
    // iterate on map
    for(const [key,value] of m){
        if (value> divisorCount) {
            divisorCount = value;
            divisor = key;
        }       
    }
 
    return divisor;
}
 
// Driver code
let x = 3;
let y = 16;
console.log(findDivisor(x, y));
 
// The code is contributed by Gautam goel (gautamgoel962)

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *