Tensorflow.js tf.LayersModel Clase .evaluate() Método

Tensorflow.js es una biblioteca de código abierto desarrollada por Google para ejecutar modelos de aprendizaje automático, así como redes neuronales de aprendizaje profundo en el entorno del navegador o del Node.

La función .evaluate() se usa para encontrar la medida de la pérdida y los valores de las métricas a favor del prototipo en el método de prueba.

Nota:

  • Aquí, el valor de pérdida, así como las métricas, se determinan en el momento de la compilación, que debe tener lugar antes de llamar al método de evaluación().
  • Aquí, la enumeración se hace en grupos.

Sintaxis:  

evaluate(x, y, args?)

Parámetros:  

  • x: Es el tf.Tensor indicado del material de prueba, o bien una array de tf.Tensors en caso de que el prototipo tenga varias entradas. Puede ser de tipo tf.Tensor o tf.Tensor[].
  • y: Es el tf.Tensor indicado del material de destino, o bien una array de tf.Tensors en caso de que el prototipo tenga varias entradas. Puede ser de tipo tf.Tensor o tf.Tensor[].
  • args: se indica ModelEvaluateArgs , que contiene campos electivos. es un objeto
  • batchSize: es el tamaño de lote indicado y, en caso de que no esté definido, el valor predeterminado es 32. Es de tipo número.
  • verbose: Es el modo de verbosidad indicado. Es de tipo ModelLoggingVerbosity .
  • sampleWeight: Es el tensor de pesos establecido para ponderar la participación de varias instancias en la pérdida, así como las métricas. Es de tipo Tf.tensor.
  • pasos: Es el número total de pasos, es decir, grupos de instancias, antes de que finalice la declaración de la ronda de estimación. Se ignora con el valor predeterminado de no especificado. Es de tipo número.

Valor devuelto: Devuelve tf.Scalar o tf.Scalar[].

Ejemplo 1: usar el optimizador como «sgd» y la pérdida como «meanAbsoluteError».

Javascript

// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Defining model
const modl = tf.sequential({
   layers: [tf.layers.dense({units: 2, inputShape: [30]})]
});
  
// Compiling model
modl.compile({optimizer: 'sgd', loss: 'meanAbsoluteError'});
  
// Calling evaluate() and randomNormal
// method
const output = modl.evaluate(
     tf.randomNormal([8, 30]), 
     tf.randomNormal([8, 2]), 
     {Sizeofbatch: 3}
);
  
// Printing output
output.print();

Salida: aquí, el método randomNormal() se usa como entrada de tensor.

Tensor
    1.1059763431549072

Ejemplo 2: usar el optimizador como «adam», la pérdida como «meanSquaredError» y «accuracy» como métricas.

Javascript

// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Defining model
const modl = tf.sequential({
   layers: [tf.layers.dense({units: 1, inputShape: [20]})]
});
  
// Compiling model
modl.compile({optimizer: 'adam', loss: 'meanSquaredError'}, 
             (metrics = ["accuracy"]));
  
// Calling evaluate() and truncatedNormal
// method
const output = modl.evaluate(
     tf.truncatedNormal([8, 20]), tf.truncatedNormal([8, 1]), 
      {Sizeofbatch: 3}, {steps: 2});
  
// Printing output
output.print();

Salida: aquí, el método truncatedNormal() se usa como entrada de tensor y también se incluye el parámetro de paso .

Tensor
    1.2484867572784424

Referencia: https://js.tensorflow.org/api/latest/#tf.LayersModel.evaluate

Publicación traducida automáticamente

Artículo escrito por nidhi1352singh y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *