Método Tensorflow.js tf.layers addLoss()

Tensorflow.js es una biblioteca de código abierto desarrollada por Google para ejecutar modelos de aprendizaje automático, así como redes neuronales de aprendizaje profundo en el entorno del navegador o del Node.

La función .addLoss() se usa para adjuntar pérdidas a la capa indicada. Además, la pérdida probablemente esté condicionada a algunos tensores de entrada, por ejemplo, las pérdidas de operación dependen de las entradas de las capas indicadas.

Sintaxis:

addLoss(losses)

Parámetros:

  • Pérdidas: Son las pérdidas declaradas. Puede ser de tipo RegularizerFn o RegularizerFn[] .

Valor devuelto: Devuelve nulo.

Ejemplo 1:

Javascript

// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Creating a model
const model = tf.sequential();
  
// Adding a layer
model.add(tf.layers.dense({units: 1, inputShape: [3]}));
  
// Defining input
const input = tf.tensor1d([1, 2, 3, 4]);
  
// Calling addLoss() method with its 
// parameter
const res = model.layers[0].addLoss([tf.abs(input)]);
  
// Printing output
console.log(JSON.stringify(input));
model.layers[0].getWeights()[0].print();

Producción:

{"kept":false,"isDisposedInternal":false,"shape":[4],"dtype":"float32",
"size":4,"strides":[],"dataId":{"id":82},"id":124,"rankType":"1","scopeId":61}
Tensor
    [[0.143441  ],
     [-0.58002  ],
     [-0.5836995]]

Ejemplo 2:

Javascript

// Importing the tensorflow.js library
import * as tf from "@tensorflow/tfjs"
  
// Creating a model
const model = tf.sequential();
  
// Adding layers
model.add(tf.layers.dense({units: 1, inputShape: [3]}));
model.add(tf.layers.dense({units: 4}));
model.add(tf.layers.dense({units: 9, inputShape: [11]}));
  
// Defining inputs
const input1 = tf.tensor1d([0.5, 0.2, -33, null]);
const input2 = tf.tensor1d([0.33, 0.5, -1]);
const input3 = tf.tensor1d([1, 0.44]);
  
// Calling addLoss() method with its 
// parameter
const res1 = model.layers[0].addLoss([tf.cos(input1)]);
const res2 = model.layers[0].addLoss([tf.sin(input2)]);
const res3 = model.layers[0].addLoss([tf.tan(input3)]);
  
// Printing outputs
console.log(JSON.stringify(input1));
console.log(JSON.stringify(input2));
console.log(JSON.stringify(input3));
model.layers[0].getWeights()[0].print();

Producción:

 {"kept":false,"isDisposedInternal":false,"shape":[4],"dtype":"float32",
 "size":4,"strides":[],"dataId":{"id":169},"id":261,"rankType":"1","scopeId":112}
{"kept":false,"isDisposedInternal":false,"shape":[3],"dtype":"float32",
"size":3,"strides":[],"dataId":{"id":170},"id":262,"rankType":"1","scopeId":112}
{"kept":false,"isDisposedInternal":false,"shape":[2],"dtype":"float32",
"size":2,"strides":[],"dataId":{"id":171},"id":263,"rankType":"1","scopeId":112}
Tensor
    [[-0.0062826],
     [0.0883235 ],
     [-1.0633234]]

Referencia: https://js.tensorflow.org/api/latest/#tf.layers.Layer.addLoss

Publicación traducida automáticamente

Artículo escrito por nidhi1352singh y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *