Minimice la diferencia mínima máxima después de una eliminación de la array

Dada una array arr[] de tamaño n ≥ 3 , la tarea es encontrar la mínima diferencia posible entre el máximo y el mínimo elemento de la array después de eliminar un elemento.
Ejemplos: 
 

Entrada: arr[] = {1, 2, 3} 
Salida:
Eliminar 1 dará 3 – 2 = 1 
Eliminar 2, 3 – 1 = 2 
Y eliminar 3 dará como resultado 2 – 1 = 1
Entrada: arr[] = {1, 2, 4, 3, 4} 
Salida:
 

Enfoque ingenuo: está claro que para tener un efecto en la diferencia solo se debe eliminar el elemento mínimo o máximo. 
 

  • Ordenar la array.
  • Elimina el mínimo, almacena diff1 = arr[n – 1] – arr[1] .
  • Elimina el máximo y diff2 = arr[n – 2] – arr[0] .
  • Imprime min(diff1, diff2) al final.

A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum required difference
int findMinDifference(int arr[], int n)
{
    // Sort the given array
    sort(arr, arr + n);
 
    // When minimum element is removed
    int diff1 = arr[n - 1] - arr[1];
 
    // When maximum element is removed
    int diff2 = arr[n - 2] - arr[0];
 
    // Return the minimum of diff1 and diff2
    return min(diff1, diff2);
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 4, 3, 4 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << findMinDifference(arr, n);
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.*;
 
class solution
{
 
// Function to return the minimum required difference
static int findMinDifference(int arr[], int n)
{
    // Sort the given array
    Arrays.sort(arr);
 
    // When minimum element is removed
    int diff1 = arr[n - 1] - arr[1];
 
    // When maximum element is removed
    int diff2 = arr[n - 2] - arr[0];
 
    // Return the minimum of diff1 and diff2
    return Math.min(diff1, diff2);
}
 
// Driver Code
public static void  main(String args[])
{
    int arr[] = { 1, 2, 4, 3, 4 };
    int n = arr.length;
 
    System.out.print(findMinDifference(arr, n));
 
}
}
// This code is contributed by
// Sanjit_Prasad

Python3

# Python3 implementation of the approach
 
# Function to return the minimum
# required difference
def findMinDifference(arr, n) :
 
    # Sort the given array
    arr.sort()
 
    # When minimum element is removed
    diff1 = arr[n - 1] - arr[1]
 
    # When maximum element is removed
    diff2 = arr[n - 2] - arr[0]
 
    # Return the minimum of diff1 and diff2
    return min(diff1, diff2)
 
# Driver Code
if __name__ == "__main__" :
 
    arr = [ 1, 2, 4, 3, 4 ]
    n = len(arr)
 
    print(findMinDifference(arr, n))
 
# This code is contributed by Ryuga

C#

// C# implementation of the approach
using System;
 
public class GFG{
     
// Function to return the minimum required difference
static int findMinDifference(int []arr, int n)
{
    // Sort the given array
    Array.Sort(arr);
 
    // When minimum element is removed
    int diff1 = arr[n - 1] - arr[1];
 
    // When maximum element is removed
    int diff2 = arr[n - 2] - arr[0];
 
    // Return the minimum of diff1 and diff2
    return Math.Min(diff1, diff2);
}
 
// Driver Code
    static public void Main (){
     
    int []arr = { 1, 2, 4, 3, 4 };
    int n = arr.Length;
 
    Console.Write(findMinDifference(arr, n));
 
}
}
// This code is contributed by Sachin..

PHP

<?php
// PHP implementation of the approach
 
// Function to return the minimum
// required difference
function findMinDifference($arr, $n)
{
    // Sort the given array
    sort($arr, 0);
 
    // When minimum element is removed
    $diff1 = $arr[$n - 1] - $arr[1];
 
    // When maximum element is removed
    $diff2 = $arr[$n - 2] - $arr[0];
 
    // Return the minimum of diff1 and diff2
    return min($diff1, $diff2);
}
 
// Driver Code
$arr = array(1, 2, 4, 3, 4);
$n = sizeof($arr);
 
echo findMinDifference($arr, $n);
 
// This code is contributed
// by Akanksha Rai

Javascript

<script>
    // Javascript implementation of the approach
     
    // Function to return the minimum required difference
    function findMinDifference(arr, n)
    {
        // Sort the given array
        arr.sort();
       
        // When minimum element is removed
        let diff1 = arr[n - 1] - arr[1];
       
        // When maximum element is removed
        let diff2 = arr[n - 2] - arr[0];
       
        // Return the minimum of diff1 and diff2
        return Math.min(diff1, diff2);
    }
     
    let arr = [ 1, 2, 4, 3, 4 ];
    let n = arr.length;
   
    document.write(findMinDifference(arr, n));
     
</script>
Producción: 

2

 

Complejidad de tiempo: O (nlogn)

Espacio Auxiliar : O(1)

Enfoque eficiente: para encontrar los elementos min , secondMin , max y secondMax de la array. No necesitamos ordenar la array, se puede hacer en un solo recorrido de array.
A continuación se muestra la implementación del enfoque anterior:
 

C++

// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to return the minimum required difference
int findMinDifference(int arr[], int n)
{
    int min__, secondMin, max__, secondMax;
 
    min__ = secondMax = (arr[0] < arr[1]) ? arr[0] : arr[1];
    max__ = secondMin = (arr[0] < arr[1]) ? arr[1] : arr[0];
 
    for (int i = 2; i < n; i++)
    {
        // If current element is greater than max
        if (arr[i] > max__)
        {
            // max will become secondMax
            secondMax = max__;
 
            // Update the max
            max__ = arr[i];
        }
 
        // If current element is greater than secondMax
        // but smaller than max
        else if (arr[i] > secondMax)
        {
 
            // Update the secondMax
            secondMax = arr[i];
        }
 
        // If current element is smaller than min
        else if (arr[i] < min__)
        {
 
            // min will become secondMin
            secondMin = min__;
 
            // Update the min
            min__ = arr[i];
        }
 
        // If current element is smaller than secondMin
        // but greater than min
        else if (arr[i] < secondMin) {
                 
            // Update the secondMin
            secondMin = arr[i];
        }
    }
 
    // Minimum of the two possible differences
    int diff = min(max__ - secondMin, secondMax - min__);
    return diff;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 4, 3, 4 };
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << (findMinDifference(arr, n));
}
     
// This code is contributed by
// Shashank_Sharma

Java

// Java implementation of the approach
public class GFG {
 
    // Function to return the minimum required difference
    static int findMinDifference(int arr[], int n)
    {
        int min, secondMin, max, secondMax;
 
        min = secondMax = (arr[0] < arr[1]) ? arr[0] : arr[1];
        max = secondMin = (arr[0] < arr[1]) ? arr[1] : arr[0];
 
        for (int i = 2; i < n; i++) {
 
            // If current element is greater than max
            if (arr[i] > max) {
 
                // max will become secondMax
                secondMax = max;
 
                // Update the max
                max = arr[i];
            }
 
            // If current element is greater than secondMax
            // but smaller than max
            else if (arr[i] > secondMax) {
 
                // Update the secondMax
                secondMax = arr[i];
            }
 
            // If current element is smaller than min
            else if (arr[i] < min) {
 
                // min will become secondMin
                secondMin = min;
 
                // Update the min
                min = arr[i];
            }
 
            // If current element is smaller than secondMin
            // but greater than min
            else if (arr[i] < secondMin) {
 
                // Update the secondMin
                secondMin = arr[i];
            }
        }
 
        // Minimum of the two possible differences
        int diff = Math.min(max - secondMin, secondMax - min);
 
        return diff;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 4, 3, 4 };
        int n = arr.length;
 
        System.out.println(findMinDifference(arr, n));
    }
}

Python3

# Python 3 implementation of the approach
 
# Function to return the minimum
# required difference
def findMinDifference(arr, n):
     
    if(arr[0] < arr[1]):
        min__ = secondMax = arr[0]
    else:
        min__ = secondMax = arr[1]
         
    if(arr[0] < arr[1]):
        max__ = secondMin = arr[1]
    else:
        max__ = secondMin = arr[0]
 
    for i in range(2, n):
         
        # If current element is greater
        # than max
        if (arr[i] > max__):
             
            # max will become secondMax
            secondMax = max__
 
            # Update the max
            max__ = arr[i]
 
        # If current element is greater than
        # secondMax but smaller than max
        elif (arr[i] > secondMax):
             
            # Update the secondMax
            secondMax = arr[i]
 
        # If current element is smaller than min
        elif(arr[i] < min__):
             
            # min will become secondMin
            secondMin = min__
 
            # Update the min
            min__ = arr[i]
 
        # If current element is smaller than
        # secondMin but greater than min
        elif(arr[i] < secondMin):
             
            # Update the secondMin
            secondMin = arr[i]
     
    # Minimum of the two possible
    # differences
    diff = min(max__ - secondMin,
                       secondMax - min__)
    return diff
 
# Driver code
if __name__ == '__main__':
    arr = [1, 2, 4, 3, 4]
    n = len(arr)
    print(findMinDifference(arr, n))
 
# This code is contributed by
# Surendra_Gangwar

C#

using System;
                     
// C# implementation of the approach
public class GFG {
 
    // Function to return the minimum required difference
    static int findMinDifference(int []arr, int n)
    {
        int min, secondMin, max, secondMax;
 
        min = secondMax = (arr[0] < arr[1]) ? arr[0] : arr[1];
        max = secondMin = (arr[0] < arr[1]) ? arr[1] : arr[0];
 
        for (int i = 2; i < n; i++) {
 
            // If current element is greater than max
            if (arr[i] > max) {
 
                // max will become secondMax
                secondMax = max;
 
                // Update the max
                max = arr[i];
            }
 
            // If current element is greater than secondMax
            // but smaller than max
            else if (arr[i] > secondMax) {
 
                // Update the secondMax
                secondMax = arr[i];
            }
 
            // If current element is smaller than min
            else if (arr[i] < min) {
 
                // min will become secondMin
                secondMin = min;
 
                // Update the min
                min = arr[i];
            }
 
            // If current element is smaller than secondMin
            // but greater than min
            else if (arr[i] < secondMin) {
 
                // Update the secondMin
                secondMin = arr[i];
            }
        }
 
        // Minimum of the two possible differences
        int diff = Math.Min(max - secondMin, secondMax - min);
 
        return diff;
    }
 
    // Driver code
    public static void Main()
    {
        int []arr = { 1, 2, 4, 3, 4 };
        int n = arr.Length;
 
        Console.WriteLine(findMinDifference(arr, n));
    }
}
// This code is contributed by 29AjayKumar

PHP

<?php
// PHP implementation of the approach
 
// Function to return the minimum
// required difference
function findMinDifference($arr, $n)
{
 
    $min__ = $secondMax = ($arr[0] < $arr[1]) ?
                           $arr[0] : $arr[1];
    $max__ = $secondMin = ($arr[0] < $arr[1]) ?
                           $arr[1] : $arr[0];
 
    for ($i = 2; $i < $n; $i++)
    {
        // If current element is greater than max
        if ($arr[$i] > $max__)
        {
            // max will become secondMax
            $secondMax = $max__;
 
            // Update the max
            $max__ = $arr[$i];
        }
 
        // If current element is greater than secondMax
        // but smaller than max
        else if ($arr[$i] > $secondMax)
        {
 
            // Update the secondMax
            $secondMax = $arr[$i];
        }
 
        // If current element is smaller than min
        else if ($arr[$i] < $min__)
        {
 
            // min will become secondMin
            $secondMin = $min__;
 
            // Update the min
            $min__ = $arr[$i];
        }
 
        // If current element is smaller than secondMin
        // but greater than min
        else if ($arr[$i] < $secondMin)
        {
                 
            // Update the secondMin
            $secondMin = $arr[$i];
        }
    }
 
    // Minimum of the two possible differences
    $diff = min($max__ - $secondMin,
                         $secondMax - $min__);
    return $diff;
}
 
// Driver code
$arr = array( 1, 2, 4, 3, 4 );
$n = count($arr);
print(findMinDifference($arr, $n));
 
// This code is contributed by mits
?>

Javascript

<script>
 
    // Javascript implementation of the approach
     
    // Function to return the minimum required difference
    function findMinDifference(arr, n)
    {
        let min__, secondMin, max__, secondMax;
      
        min__ = secondMax = (arr[0] < arr[1]) ? arr[0] : arr[1];
        max__ = secondMin = (arr[0] < arr[1]) ? arr[1] : arr[0];
      
        for (let i = 2; i < n; i++)
        {
            // If current element is greater than max
            if (arr[i] > max__)
            {
                // max will become secondMax
                secondMax = max__;
      
                // Update the max
                max__ = arr[i];
            }
      
            // If current element is greater than secondMax
            // but smaller than max
            else if (arr[i] > secondMax)
            {
      
                // Update the secondMax
                secondMax = arr[i];
            }
      
            // If current element is smaller than min
            else if (arr[i] < min__)
            {
      
                // min will become secondMin
                secondMin = min__;
      
                // Update the min
                min__ = arr[i];
            }
      
            // If current element is smaller than secondMin
            // but greater than min
            else if (arr[i] < secondMin) {
                      
                // Update the secondMin
                secondMin = arr[i];
            }
        }
      
        // Minimum of the two possible differences
        let diff = Math.min(max__ - secondMin, secondMax - min__);
        return diff;
    }  
     
    let arr = [ 1, 2, 4, 3, 4 ];
    let n = arr.length;
    document.write(findMinDifference(arr, n));
     
</script>

Complejidad de tiempo: O(n), para atravesar una array de tamaño n
Espacio auxiliar: O(1), ya que no se utiliza espacio adicional

Publicación traducida automáticamente

Artículo escrito por sirjan13 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *