Compruebe el espejo en el árbol n-ario

Dados dos árboles n-arios, la tarea es verificar si son el espejo entre sí o no. Escriba «Sí» si son el espejo el uno del otro «No».

Ejemplos: 

Input : Node = 3, Edges = 2
Edge 1 of first N-ary: 1 2
Edge 2 of first N-ary: 1 3
Edge 1 of second N-ary: 1 3
Edge 2 of second N-ary: 1 2
Output : Yes

Input : Node = 3, Edges = 2
Edge 1 of first N-ary: 1 2 
Edge 2 of first N-ary: 1 3
Edge 1 of second N-ary: 1 2
Edge 2 of second N-ary: 1 3
Output : No

Enfoque 1: (usando hashing)

La idea es usar un mapa desordenado de pilas para verificar si los árboles N-arios dados son espejo entre sí o no. 
Sea t1 el primer árbol n-ario y t2 el segundo árbol n-ario. Para cada Node en t1, inserte su Node conectado en su pila correspondiente en el mapa. Ahora, para cada Node en t2, su Node conectado coincide con la parte superior de la pila, luego extrae elementos de la pila.  

De lo contrario, si el Node no coincide con la parte superior de la pila, significa que dos árboles no son un espejo entre sí. 

Ahora, para cada Node correspondiente haga lo siguiente:  

  1. Iterate over map of stack
      Push all connected nodes of each node of first tree in map of  stack.

  2. Again iterate over map for each node of second tree
      For example :     

      Let us take one node X of second tree 
      
      For this node X , check in map which stack is used

      a = Top of that stack for node X present in second tree;
      b = Connected node of X in second tree
      if (a != b)
           return false;
      pop node X from stack.

Implementación:

C++

// C++ program to check if two n-ary trees are
// mirror.
#include <bits/stdc++.h>
using namespace std;
 
// Function to check given two trees are mirror
// of each other or not
int checkMirrorTree(int M, int N, int u1[ ],
                    int v1[ ] , int u2[], int v2[])
    {
        // Map to store nodes of the tree
        unordered_map<int , stack<int>>mp;
   
        // Traverse first tree nodes
        for (int i = 0 ; i < N ; i++ )
        {
           mp[u1[i]].push(v1[i]);
        }
         
        // Traverse second tree nodes
        for (int i = 0 ; i < N ; i++)
        {
            if(mp[u2[i]].top() != v2[i])
                  return 0;
            mp[u2[i]].pop();
        }
   
        return 1;
    }
 
// Driver code
int main()
{
    int M = 7, N = 6;
     
    //Tree 1
    int u1[] = { 1, 1, 1, 10, 10, 10 };
    int v1[] = { 10, 7, 3, 4, 5, 6 };
   
    //Tree 2
    int u2[] = { 1, 1, 1, 10, 10, 10 };
    int v2[] = { 3, 7, 10, 6, 5, 4 };
 
    if(checkMirrorTree(M, N, u1, v1, u2, v2))
       cout<<"Yes";
    else
       cout<<"No";
   
    return 0;
}

Java

// Java program to check if two n-ary trees are mirror.
import java.util.*;
public class Main
{
    // Function to check given two trees are mirror
    // of each other or not
    static boolean checkMirrorTree(int M, int N, int[] u1, int[] v1, int[] u2, int[] v2)
    {
        
        // Map to store nodes of the tree
        HashMap<Integer, Stack<Integer>> mp = new HashMap<>();
     
        // Traverse first tree nodes
        for (int i = 0 ; i < N ; i++ )
        {
           if(!mp.containsKey(u1[i]))
           {
               mp.put(u1[i], new Stack<Integer>());
           }
           else{
               mp.get(u1[i]).push(v1[i]);
           }
        }
           
        // Traverse second tree nodes
        for (int i = 0 ; i < N ; i++)
        {
            if(mp.containsKey(u2[i]) && mp.get(u2[i]).size() > 0)
            {
                if(mp.get(u2[i]).peek() != v2[i])
                  return false;
                mp.get(u2[i]).pop();
            }
        }
     
        return true;
    }
     
  // Driver code
    public static void main(String[] args) {
        int M = 7, N = 6;
       
        // Tree 1
        int[] u1 = { 1, 1, 1, 10, 10, 10 };
        int[] v1 = { 10, 7, 3, 4, 5, 6 };
         
        // Tree 2
        int[] u2 = { 1, 1, 1, 10, 10, 10 };
        int[] v2 = { 3, 7, 10, 6, 5, 4 };
       
        if(checkMirrorTree(M, N, u1, v1, u2, v2))
           System.out.print("Yes");
        else
           System.out.print("No");
    }
}
 
// This code is contributed by divyeshrabadiya07.

Python3

# Python3 program to check if two n-ary trees are mirror.
 
# Function to check given two trees are mirror
# of each other or not
def checkMirrorTree(M, N, u1, v1, u2, v2):
    # Map to store nodes of the tree
    mp = {}
 
    # Traverse first tree nodes
    for i in range(N):
        if u1[i] in mp:
            mp[u1[i]].append(v1[i])
        else:
            mp[u1[i]] = []
      
    # Traverse second tree nodes
    for i in range(N):
        if u2[i] in mp and len(mp[u2[i]]) > 0:
            if(mp[u2[i]][-1] != v2[i]):
                return 0
            mp[u2[i]].pop()
    return 1
 
M, N = 7, 6
      
#Tree 1
u1 = [ 1, 1, 1, 10, 10, 10 ]
v1 = [ 10, 7, 3, 4, 5, 6 ]
 
#Tree 2
u2 = [ 1, 1, 1, 10, 10, 10 ]
v2 = [ 3, 7, 10, 6, 5, 4 ]
 
if(checkMirrorTree(M, N, u1, v1, u2, v2)):
   print("Yes")
else:
   print("No")
     
    # This code is contributed by rameshtravel07.

C#

// C# program to check if two n-ary trees are mirror.
using System;
using System.Collections.Generic;
class GFG {
     
    // Function to check given two trees are mirror
    // of each other or not
    static bool checkMirrorTree(int M, int N, int[] u1, int[] v1, int[] u2, int[] v2)
    {
       
        // Map to store nodes of the tree
        Dictionary<int, Stack<int>> mp = new Dictionary<int, Stack<int>>();
    
        // Traverse first tree nodes
        for (int i = 0 ; i < N ; i++ )
        {
           if(!mp.ContainsKey(u1[i]))
           {
               mp[u1[i]] = new Stack<int>();
           }
           else{
               mp[u1[i]].Push(v1[i]);
           }
        }
          
        // Traverse second tree nodes
        for (int i = 0 ; i < N ; i++)
        {
            if(mp.ContainsKey(u2[i]) && mp[u2[i]].Count > 0)
            {
                if(mp[u2[i]].Peek() != v2[i])
                  return false;
                mp[u2[i]].Pop();
            }
        }
    
        return true;
    }
     
  // Driver code
  static void Main()
  {
    int M = 7, N = 6;
      
    // Tree 1
    int[] u1 = { 1, 1, 1, 10, 10, 10 };
    int[] v1 = { 10, 7, 3, 4, 5, 6 };
    
    // Tree 2
    int[] u2 = { 1, 1, 1, 10, 10, 10 };
    int[] v2 = { 3, 7, 10, 6, 5, 4 };
  
    if(checkMirrorTree(M, N, u1, v1, u2, v2))
       Console.Write("Yes");
    else
       Console.Write("No");
  }
}
 
// This code is contributed by mukesh07.
Producción

Yes

Enfoque 2: (usando LinkedList):

El enfoque principal es usar una lista de pila y una lista de cola para almacenar el valor de los Nodes dados en forma de dos arrays.

  1. Inicialice ambas listas con la pila vacía y las colas vacías, respectivamente.
  2. Ahora, itere sobre las listas 
    Empuje todos los Nodes conectados de cada Node del primer árbol en la lista de la pila y la lista del segundo árbol de la cola.
  3. Ahora itere sobre la array y extraiga el elemento tanto de la pila como de la cola y verifique si son iguales, si no son iguales, devuelva 0.

Implementación:

Java

// Java program to check two n-ary trees are mirror.
 
import java.io.*;
import java.util.*;
 
class GFG {
   
      // Function to check given two trees are mirror
    // of each other or not
      static int checkMirrorTree(int n, int e, int[] A, int[] B) {
 
          //Lists to store nodes of the tree
        List<Stack<Integer>> s = new ArrayList<>();
        List<Queue<Integer>> q = new ArrayList<>();
 
        // initializing both list with empty stack and queue
        for (int i = 0; i <= n; i++) {
            s.add(new Stack<>());
            Queue<Integer> queue = new LinkedList<>();
            q.add(queue);
        }
 
           // add all nodes of tree 1 to list of stack and tree 2 to list of queue
        for (int i = 0; i < 2 * e; i += 2) {
            s.get(A[i]).push(A[i + 1]);
            q.get(B[i]).add(B[i + 1]);
        }
 
          // now take out the stack and queues
        // for each of the nodes and compare them
        // one by one
        for (int i = 1; i <= n; i++) {
            while (!s.get(i).isEmpty() && !q.get(i).isEmpty()) {
                int a = s.get(i).pop();
                int b = q.get(i).poll();
 
                if (a != b) {
                    return 0;
                }
            }
        }
 
        return 1;
    }
   
    public static void main (String[] args) {
        int n = 3;
        int e = 2;
        int A[] = { 1, 2, 1, 3 };
        int B[] = { 1, 3, 1, 2 };
 
        if (checkMirrorTree(n, e, A, B) == 1) {
            System.out.println("Yes");
        } else {
            System.out.println("No");
        }
 
    }
}

Python3

# Python3 program to check two n-ary trees are mirror.
 
# Function to check given two trees are mirror
# of each other or not
def checkMirrorTree(n, e, A, B):
    # Lists to store nodes of the tree
    s = []
    q = []
 
    # initializing both list with empty stack and queue
    for i in range(n + 1):
        s.append([])
        queue = []
        q.append(queue)
 
   # add all nodes of tree 1 to
   # list of stack and tree 2 to list of queue
    for i in range(0, 2 * e, 2):
        s[A[i]].append(A[i + 1])
        q[B[i]].append(B[i + 1])
 
    # now take out the stack and queues
    # for each of the nodes and compare them
    # one by one
    for i in range(1, n + 1):
        while (len(s[i]) > 0 and len(q[i]) > 0):
            a = s[i][len(s[i]) - 1]
            s[i].pop()
            b = q[i][0]
            q[i].pop(0)
 
            if (a != b):
                return 0
    return 1
 
  # Driver code
n = 3
e = 2
A = [ 1, 2, 1, 3 ]
B = [ 1, 3, 1, 2 ]
 
if (checkMirrorTree(n, e, A, B) == 1):
    print("Yes")
else:
    print("No")
     
    # This code is contributed by decode2207.

C#

// C# program to check two n-ary trees are mirror.
using System;
using System.Collections;
using System.Collections.Generic;
class GFG {
     
    // Function to check given two trees are mirror
    // of each other or not
    static int checkMirrorTree(int n, int e, int[] A, int[] B)
    {
        //Lists to store nodes of the tree
        List<Stack> s = new List<Stack>();
        List<Queue> q = new List<Queue>();
  
        // initializing both list with empty stack and queue
        for (int i = 0; i <= n; i++) {
            s.Add(new Stack());
            Queue queue = new Queue();
            q.Add(queue);
        }
  
           // add all nodes of tree 1 to list of stack and tree 2 to list of queue
        for (int i = 0; i < 2 * e; i += 2) {
            s[A[i]].Push(A[i + 1]);
            q[B[i]].Enqueue(B[i + 1]);
        }
  
          // now take out the stack and queues
        // for each of the nodes and compare them
        // one by one
        for (int i = 1; i <= n; i++) {
            while (s[i].Count > 0 && q[i].Count > 0) {
                int a = (int)s[i].Pop();
                int b = (int)q[i].Dequeue();
  
                if (a != b) {
                    return 0;
                }
            }
        }
  
        return 1;
    }
     
  static void Main() {
    int n = 3;
    int e = 2;
    int[] A = { 1, 2, 1, 3 };
    int[] B = { 1, 3, 1, 2 };
 
    if (checkMirrorTree(n, e, A, B) == 1) {
        Console.Write("Yes");
    } else {
        Console.Write("No");
    }
  }
}
 
// This code is contributed by divyesh072019.

Javascript

<script>
    // Javascript program to check two n-ary trees are mirror.
     
    // Function to check given two trees are mirror
    // of each other or not
      function checkMirrorTree(n, e, A, B) {
  
          //Lists to store nodes of the tree
        let s = [];
        let q = [];
  
        // initializing both list with empty stack and queue
        for (let i = 0; i <= n; i++) {
            s.push([]);
            let queue = [];
            q.push(queue);
        }
  
           // add all nodes of tree 1 to
           // list of stack and tree 2 to list of queue
        for (let i = 0; i < 2 * e; i += 2) {
            s[A[i]].push(A[i + 1]);
            q[B[i]].push(B[i + 1]);
        }
  
          // now take out the stack and queues
        // for each of the nodes and compare them
        // one by one
        for (let i = 1; i <= n; i++) {
            while (s[i].length > 0 && q[i].length > 0) {
                let a = s[i][s[i].length - 1];
                s[i].pop();
                let b = q[i][0];
                q[i].shift();
  
                if (a != b) {
                    return 0;
                }
            }
        }
  
        return 1;
    }
     
    let n = 3;
    let e = 2;
    let A = [ 1, 2, 1, 3 ];
    let B = [ 1, 3, 1, 2 ];
 
    if (checkMirrorTree(n, e, A, B) == 1) {
      document.write("Yes");
    } else {
      document.write("No");
    }
    
   // This code is contributed by suresh07.
</script>
Producción

Yes

Referencia: https://practice.geeksforgeeks.org/problems/check-mirror-in-n-ary-tree/0

Este artículo es una contribución de Nitin Kumar . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks. 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *