Node que tiene la suma máxima de hijos inmediatos y él mismo en un árbol n-ario

Dado un árbol N-Ario , encuentre y devuelva el Node para el cual la suma de datos de todos los hijos y el Node en sí es máxima. En la suma, se tomarán los datos del Node en sí y los datos de sus hijos inmediatos. 
Por ejemplo, en el árbol dado,

C++

// CPP program to find the node whose children
// and node sum is maximum.
#include <bits/stdc++.h>
using namespace std;
 
// Structure of a node of an n-ary tree
struct Node {
    int key;
    vector<Node*> child;
};
 
// Utility function to create a new tree node
Node* newNode(int key)
{
    Node* temp = new Node;
    temp->key = key;
    return temp;
}
 
// Helper function to find the node
void maxSumUtil(Node* root, Node** resNode,
                int* maxsum)
{
    // Base Case
    if (root == NULL)
        return;
 
    // curr contains the sum of the root and
    // its children
    int currsum = root->key;
 
    // total no of children
    int count = root->child.size();
 
    // for every child call recursively
    for (int i = 0; i < count; i++) {
        currsum += root->child[i]->key;
        maxSumUtil(root->child[i], resNode, maxsum);
    }
 
    // if curr is greater than sum, update it
    if (currsum > *maxsum) {
 
        // resultant node
        *resNode = root;
        *maxsum = currsum;
    }
    return;
}
 
// Function to find the node having max sum of
// children and node
int maxSum(Node* root)
{
    // resultant node with max sum of children
    // and node
    Node* resNode;
 
    // sum of node and its children
    int maxsum = 0;
 
    maxSumUtil(root, &resNode, &maxsum);
 
    // return the key of resultant node
    return resNode->key;
}
 
// Driver program
int main()
{
    /*   Let us create below tree
    *              1
    *          /   |  \
    *         2   3   4
    *        / \    / |  \ \
    *       5   6  7  8  9  10
    */
 
    Node* root = newNode(1);
    (root->child).push_back(newNode(2));
    (root->child).push_back(newNode(3));
    (root->child).push_back(newNode(4));
    (root->child[0]->child).push_back(newNode(5));
    (root->child[0]->child).push_back(newNode(6));
    (root->child[2]->child).push_back(newNode(5));
    (root->child[2]->child).push_back(newNode(6));
    (root->child[2]->child).push_back(newNode(6));
 
    cout << maxSum(root) << endl;
 
    return 0;
}

Java

// Java program to find the node whose children
// and node sum is maximum.
import java.util.*;
 
class GFG
{
     
// Structure of a node of an n-ary tree
static class Node
{
    int key;
    Vector<Node> child;
    Node()
    {
        child = new Vector<Node>();
    }
};
 
// Utility function to create a new tree node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
    return temp;
}
 
static int maxsum;
 
// resultant node with max sum of children
// and node
static Node resNode;
 
// Helper function to find the node
static void maxSumUtil(Node root)
{
    // Base Case
    if (root == null)
        return;
 
    // curr contains the sum of the root and
    // its children
    int currsum = root.key;
 
    // total no of children
    int count = root.child.size();
 
    // for every child call recursively
    for (int i = 0; i < count; i++)
    {
        currsum += root.child.get(i).key;
        maxSumUtil(root.child.get(i));
    }
 
    // if curr is greater than sum, update it
    if (currsum > maxsum)
    {
 
        // resultant node
        resNode = root;
        maxsum = currsum;
    }
    return;
}
 
// Function to find the node having max sum of
// children and node
static int maxSum(Node root)
{
     
    // sum of node and its children
    int maxsum = 0;
 
    maxSumUtil(root);
 
    // return the key of resultant node
    return resNode.key;
}
 
// Driver code
public static void main(String args[])
{
    /* Let us create below tree
                1
            / | \
            2 3 4
        / \ / | \ \
        5 6 7 8 9 10
    */
 
    Node root = newNode(1);
    (root.child).add(newNode(2));
    (root.child).add(newNode(3));
    (root.child).add(newNode(4));
    (root.child.get(0).child).add(newNode(5));
    (root.child.get(0).child).add(newNode(6));
    (root.child.get(2).child).add(newNode(5));
    (root.child.get(2).child).add(newNode(6));
    (root.child.get(2).child).add(newNode(6));
 
    System.out.print( maxSum(root) );
}
}
 
// This code is contributed by Arnab Kundu

Python3

# Python3 program to find the node
# whose children and node sum is maximum.
 
# Structure of a node of an n-ary tree
class Node:
     
    def __init__(self, key):
        self.key = key
        self.child = []
 
# Helper function to find the node
def maxSumUtil(root, resNode, maxsum):
 
    # Base Case
    if root == None:
        return
 
    # curr contains the sum of the root
    # and its children
    currsum = root.key
 
    # total no of children
    count = len(root.child)
 
    # for every child call recursively
    for i in range(0, count):
        currsum += root.child[i].key
        resNode, maxsum = maxSumUtil(root.child[i],
                                     resNode, maxsum)
 
    # if curr is greater than sum,
    # update it
    if currsum > maxsum:
 
        # resultant node
        resNode = root
        maxsum = currsum
     
    return resNode, maxsum
 
# Function to find the node having
# max sum of children and node
def maxSum(root):
 
    # resultant node with max
    # sum of children and node
    resNode, maxsum = Node(None), 0
    resNode, maxsum = maxSumUtil(root, resNode,
                                       maxsum)
 
    # return the key of resultant node
    return resNode.key
 
# Driver Code
if __name__ == "__main__":
 
    root = Node(1)
    (root.child).append(Node(2))
    (root.child).append(Node(3))
    (root.child).append(Node(4))
    (root.child[0].child).append(Node(5))
    (root.child[0].child).append(Node(6))
    (root.child[2].child).append(Node(5))
    (root.child[2].child).append(Node(6))
    (root.child[2].child).append(Node(6))
 
    print(maxSum(root))
 
# This code is contributed by Rituraj Jain

C#

// C# program to find the node whose children
// and node sum is maximum
using System;
using System.Collections.Generic;
 
class GFG
{
     
// Structure of a node of an n-ary tree
public class Node
{
    public int key;
    public List<Node> child;
    public Node()
    {
        child = new List<Node>();
    }
};
 
// Utility function to create a new tree node
static Node newNode(int key)
{
    Node temp = new Node();
    temp.key = key;
    return temp;
}
 
static int maxsum;
 
// resultant node with max sum of children
// and node
static Node resNode;
 
// Helper function to find the node
static void maxSumUtil(Node root)
{
    // Base Case
    if (root == null)
        return;
 
    // curr contains the sum of the root and
    // its children
    int currsum = root.key;
 
    // total no of children
    int count = root.child.Count;
 
    // for every child call recursively
    for (int i = 0; i < count; i++)
    {
        currsum += root.child[i].key;
        maxSumUtil(root.child[i]);
    }
 
    // if curr is greater than sum, update it
    if (currsum > maxsum)
    {
 
        // resultant node
        resNode = root;
        maxsum = currsum;
    }
    return;
}
 
// Function to find the node having max sum of
// children and node
static int maxSum(Node root)
{
     
    // sum of node and its children
    int maxsum = 0;
 
    maxSumUtil(root);
 
    // return the key of resultant node
    return resNode.key;
}
 
// Driver code
public static void Main(String []args)
{
    /* Let us create below tree
                1
            / | \
            2 3 4
        / \ / | \ \
        5 6 7 8 9 10
    */
 
    Node root = newNode(1);
    (root.child).Add(newNode(2));
    (root.child).Add(newNode(3));
    (root.child).Add(newNode(4));
    (root.child[0].child).Add(newNode(5));
    (root.child[0].child).Add(newNode(6));
    (root.child[2].child).Add(newNode(5));
    (root.child[2].child).Add(newNode(6));
    (root.child[2].child).Add(newNode(6));
 
    Console.Write( maxSum(root) );
}
}
 
// This code has been contributed by 29AjayKumar

Javascript

<script>
 
// JavaScript program to find the node whose children
// and node sum is maximum
 
     
// Structure of a node of an n-ary tree
class Node
{
    constructor()
    {
        this.key = null;
        this.child = []
    }
};
 
// Utility function to create a new tree node
function newNode(key)
{
    var temp = new Node();
    temp.key = key;
    return temp;
}
 
var maxsum = 0;
 
// resultant node with max sum of children
// and node
var resNode = 0;
 
// Helper function to find the node
function maxSumUtil(root)
{
    // Base Case
    if (root == null)
        return;
 
    // curr contains the sum of the root and
    // its children
    var currsum = root.key;
 
    // total no of children
    var count = root.child.length;
 
    // for every child call recursively
    for (var i = 0; i < count; i++)
    {
        currsum += root.child[i].key;
        maxSumUtil(root.child[i]);
    }
 
    // if curr is greater than sum, update it
    if (currsum > maxsum)
    {
 
        // resultant node
        resNode = root;
        maxsum = currsum;
    }
    return;
}
 
// Function to find the node having max sum of
// children and node
function maxSum(root)
{
     
    // sum of node and its children
    var maxsum = 0;
 
    maxSumUtil(root);
 
    // return the key of resultant node
    return resNode.key;
}
 
// Driver code
/* Let us create below tree
            1
        / | \
        2 3 4
    / \ / | \ \
    5 6 7 8 9 10
*/
var root = newNode(1);
(root.child).push(newNode(2));
(root.child).push(newNode(3));
(root.child).push(newNode(4));
(root.child[0].child).push(newNode(5));
(root.child[0].child).push(newNode(6));
(root.child[2].child).push(newNode(5));
(root.child[2].child).push(newNode(6));
(root.child[2].child).push(newNode(6));
document.write( maxSum(root) );
 
</script>

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *