Dado un árbol binario , la tarea es encontrar el Node del árbol dado que tiene el número máximo de Nodes en su subárbol con valores menores que el valor de ese Node. En el caso de múltiples Nodes posibles con el mismo número de Nodes máximos, devuelva cualquiera de esos Nodes.
Ejemplos:
Aporte:
4
/ \
6 10
/ \ / \
2 3 7 14
/
5
Salida: 6
Explicación:
El Node con valor 6 tiene el máximo de Nodes que son menores que 6 en el subárbol de 6 como (2, 3, 5), es decir, 3 .Entrada:
10
/
21
/ \
2 4
\
11Salida: 21
Explicación:
El Node con valor 21 tiene el máximo de Nodes que son menores que 21 en el subárbol de 21 como (2, 4, 11), es decir, 3.
Enfoque: La idea es utilizar el recorrido Post Order . A continuación se muestran los pasos:
- Realice el Post Order Traversal en el árbol dado.
- Compare los Nodes del subárbol izquierdo y el subárbol derecho con su valor raíz y si es menor que el valor de la raíz y almacene los Nodes que son menores que el Node raíz.
- Usando el paso anterior en cada Node, encuentre la cantidad de Nodes, luego elija el Node que tenga la cantidad máxima de Nodes cuyas claves sean menores que el Node actual.
- Después del recorrido anterior, imprima ese Node que tiene el recuento máximo de valor de Node menor que esos Nodes.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Stores the nodes to be deleted unordered_map<int, bool> mp; // Structure of a Tree node struct Node { int key; struct Node *left, *right; }; // Function to create a new node Node* newNode(int key) { Node* temp = new Node; temp->key = key; temp->left = temp->right = NULL; return (temp); } // Function to compare the current node // key with keys received from it left // & right tree by Post Order traversal vector<int> findNodes(Node* root, int& max_v, int& rootIndex) { // Base Case if (!root) { return vector<int>{}; } // Find nodes lesser than the current // root in the left subtree vector<int> left = findNodes(root->left, max_v, rootIndex); // Find nodes lesser than the current // root in the right subtree vector<int> right = findNodes(root->right, max_v, rootIndex); // Stores all the nodes less than // the current node's vector<int> combined; int count = 0; // Add the nodes which are less // than current node in left[] for (int i = 0; i < left.size(); i++) { if (left[i] < root->key) { count += 1; } combined.push_back(left[i]); } // Add the nodes which are less // than current node in right[] for (int i = 0; i < right.size(); i++) { if (right[i] < root->key) { count += 1; } combined.push_back(right[i]); } // Create a combined vector for // pass to it's parent combined.push_back(root->key); // Stores key that has maximum nodes if (count > max_v) { rootIndex = root->key; max_v = count; } // Return the vector of nodes return combined; } // Driver Code int main() { /* 3 / \ 4 6 / \ / \ 10 2 4 5 */ // Given Tree Node* root = newNode(3); root->left = newNode(4); root->right = newNode(6); root->right->left = newNode(4); root->right->right = newNode(5); root->left->left = newNode(10); root->left->right = newNode(2); int max_v = 0; int rootIndex = -1; // Function Call findNodes(root, max_v, rootIndex); // Print the node value cout << rootIndex; }
Java
// Java program for // the above approach import java.util.*; class GFG{ // Stores the nodes to be deleted static HashMap<Integer, Boolean> mp = new HashMap<Integer, Boolean>(); static int max_v, rootIndex; // Structure of a Tree node static class Node { int key; Node left, right; }; // Function to create a new node static Node newNode(int key) { Node temp = new Node(); temp.key = key; temp.left = temp.right = null; return (temp); } // Function to compare the current node // key with keys received from it left // & right tree by Post Order traversal static Vector<Integer> findNodes(Node root) { // Base Case if (root == null) { return new Vector<Integer>(); } // Find nodes lesser than the current // root in the left subtree Vector<Integer> left = findNodes(root.left); // Find nodes lesser than the current // root in the right subtree Vector<Integer> right = findNodes(root.right); // Stores all the nodes less than // the current node's Vector<Integer> combined = new Vector<Integer>(); int count = 0; // Add the nodes which are less // than current node in left[] for (int i = 0; i < left.size(); i++) { if (left.get(i) < root.key) { count += 1; } combined.add(left.get(i)); } // Add the nodes which are less // than current node in right[] for (int i = 0; i < right.size(); i++) { if (right.get(i) < root.key) { count += 1; } combined.add(right.get(i)); } // Create a combined vector for // pass to it's parent combined.add(root.key); // Stores key that has maximum nodes if (count > max_v) { rootIndex = root.key; max_v = count; } // Return the vector of nodes return combined; } // Driver Code public static void main(String[] args) { /* 3 / \ 4 6 / \ / \ 10 2 4 5 */ // Given Tree Node root = newNode(3); root.left = newNode(4); root.right = newNode(6); root.right.left = newNode(4); root.right.right = newNode(5); root.left.left = newNode(10); root.left.right = newNode(2); max_v = 0; rootIndex = -1; // Function Call findNodes(root); // Print the node value System.out.print(rootIndex); } } // This code is contributed by Rajput-Ji
Python3
# Python3 program for the above approach # Stores the nodes to be deleted max_v = 0 rootIndex = 0 mp = {} # Structure of a Tree node class newNode: def __init__(self, key): self.key = key self.left = None self.right = None # Function to compare the current node # key with keys received from it left # & right tree by Post Order traversal def findNodes(root): global max_v global rootIndex global mp # Base Case if (root == None): return [] # Find nodes lesser than the current # root in the left subtree left = findNodes(root.left) # Find nodes lesser than the current # root in the right subtree right = findNodes(root.right) # Stores all the nodes less than # the current node's combined = [] count = 0 # Add the nodes which are less # than current node in left[] for i in range(len(left)): if (left[i] < root.key): count += 1 combined.append(left[i]) # Add the nodes which are less # than current node in right[] for i in range(len(right)): if (right[i] < root.key): count += 1 combined.append(right[i]) # Create a combined vector for # pass to it's parent combined.append(root.key) # Stores key that has maximum nodes if (count > max_v): rootIndex = root.key max_v = count # Return the vector of nodes return combined # Driver Code if __name__ == '__main__': ''' 3 / \ 4 6 / \ / \ 10 2 4 5 ''' # Given Tree root = None root = newNode(3) root.left = newNode(4) root.right = newNode(6) root.right.left = newNode(4) root.right.right = newNode(5) root.left.left = newNode(10) root.left.right = newNode(2) max_v = 0 rootIndex = -1 # Function Call findNodes(root) # Print the node value print(rootIndex) # This code is contributed by ipg2016107
C#
// C# program for // the above approach using System; using System.Collections.Generic; class GFG{ // Stores the nodes to be deleted static Dictionary<int, Boolean> mp = new Dictionary<int, Boolean>(); static int max_v, rootIndex; // Structure of a Tree node class Node { public int key; public Node left, right; }; // Function to create a new node static Node newNode(int key) { Node temp = new Node(); temp.key = key; temp.left = temp.right = null; return (temp); } // Function to compare the current node // key with keys received from it left // & right tree by Post Order traversal static List<int> findNodes(Node root) { // Base Case if (root == null) { return new List<int>(); } // Find nodes lesser than the current // root in the left subtree List<int> left = findNodes(root.left); // Find nodes lesser than the current // root in the right subtree List<int> right = findNodes(root.right); // Stores all the nodes less than // the current node's List<int> combined = new List<int>(); int count = 0; // Add the nodes which are less // than current node in []left for(int i = 0; i < left.Count; i++) { if (left[i] < root.key) { count += 1; } combined.Add(left[i]); } // Add the nodes which are less // than current node in []right for(int i = 0; i < right.Count; i++) { if (right[i] < root.key) { count += 1; } combined.Add(right[i]); } // Create a combined vector for // pass to it's parent combined.Add(root.key); // Stores key that has maximum nodes if (count > max_v) { rootIndex = root.key; max_v = count; } // Return the vector of nodes return combined; } // Driver Code public static void Main(String[] args) { /* 3 / \ 4 6 / \ / \ 10 2 4 5 */ // Given Tree Node root = newNode(3); root.left = newNode(4); root.right = newNode(6); root.right.left = newNode(4); root.right.right = newNode(5); root.left.left = newNode(10); root.left.right = newNode(2); max_v = 0; rootIndex = -1; // Function call findNodes(root); // Print the node value Console.Write(rootIndex); } } // This code is contributed by Amit Katiyar
Javascript
<script> // JavaScript program for the above approach // Stores the nodes to be deleted let mp = new Map(); let max_v, rootIndex; // Structure of a Tree node class Node { constructor(key) { this.left = null; this.right = null; this.key = key; } } // Function to create a new node function newNode(key) { let temp = new Node(key); return (temp); } // Function to compare the current node // key with keys received from it left // & right tree by Post Order traversal function findNodes(root) { // Base Case if (root == null) { return []; } // Find nodes lesser than the current // root in the left subtree let left = findNodes(root.left); // Find nodes lesser than the current // root in the right subtree let right = findNodes(root.right); // Stores all the nodes less than // the current node's let combined = []; let count = 0; // Add the nodes which are less // than current node in left[] for (let i = 0; i < left.length; i++) { if (left[i] < root.key) { count += 1; } combined.push(left[i]); } // Add the nodes which are less // than current node in right[] for (let i = 0; i < right.length; i++) { if (right[i] < root.key) { count += 1; } combined.push(right[i]); } // Create a combined vector for // pass to it's parent combined.push(root.key); // Stores key that has maximum nodes if (count > max_v) { rootIndex = root.key; max_v = count; } // Return the vector of nodes return combined; } /* 3 / \ 4 6 / \ / \ 10 2 4 5 */ // Given Tree let root = newNode(3); root.left = newNode(4); root.right = newNode(6); root.right.left = newNode(4); root.right.right = newNode(5); root.left.left = newNode(10); root.left.right = newNode(2); max_v = 0; rootIndex = -1; // Function Call findNodes(root); // Print the node value document.write(rootIndex); </script>
6
Tiempo Complejidad: O(N 2 )
Espacio Auxiliar: O(N)