Dada una array de N enteros. La tarea es encontrar el número más grande que es un cubo perfecto. Imprime -1 si no hay ningún número que sea cubo perfecto.
Ejemplos :
Input : arr[] = {16, 8, 25, 2, 3, 10} Output : 25 Explanation: 25 is the largest number that is a perfect cube. Input : arr[] = {36, 64, 10, 16, 29, 25| Output : 64
Una solución simple es ordenar los elementos y ordenar los números N y comenzar a buscar desde atrás un número de cubo perfecto usando la función cbrt(). El primer número desde el final, que es un número cúbico perfecto, es nuestra respuesta. La complejidad de clasificación es O(n log n) y de la función cbrt() es log n, por lo que en el peor de los casos la complejidad es O(n log n).
Una Solución Eficiente es iterar para todos los elementos en O(n) y comparar cada vez con el elemento máximo, y almacenar el máximo de todos los cubos perfectos.
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to find the largest perfect // cube number among n numbers #include <bits/stdc++.h> using namespace std; // Function to check if a number // is perfect cube number or not bool checkPerfectcube(int n) { // takes the sqrt of the number int d = cbrt(n); // checks if it is a perfect // cube number if (d * d * d == n) return true; return false; } // Function to find the largest perfect // cube number in the array int largestPerfectcubeNumber(int a[], int n) { // stores the maximum of all // perfect cube numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube(a[i])) maxi = max(a[i], maxi); } return maxi; } // Driver Code int main() { int a[] = { 16, 64, 25, 2, 3, 10 }; int n = sizeof(a) / sizeof(a[0]); cout << largestPerfectcubeNumber(a, n); return 0; }
C
// C program to find the largest perfect // cube number among n numbers #include <stdio.h> #include <math.h> #include <stdbool.h> int max(int a, int b) { int max = a; if(max < b) max = b; return max; } // Function to check if a number // is perfect cube number or not bool checkPerfectcube(int n) { // takes the sqrt of the number int d = cbrt(n); // checks if it is a perfect // cube number if (d * d * d == n) return true; return false; } // Function to find the largest perfect // cube number in the array int largestPerfectcubeNumber(int a[], int n) { // stores the maximum of all // perfect cube numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube(a[i])) maxi = max(a[i], maxi); } return maxi; } // Driver Code int main() { int a[] = { 16, 64, 25, 2, 3, 10 }; int n = sizeof(a) / sizeof(a[0]); printf("%d",largestPerfectcubeNumber(a, n)); return 0; } // This code is contributed by kothavvsaakash.
Java
// Java program to find the largest perfect // cube number among n numbers class Solution { // Function to check if a number // is perfect cube number or not static boolean checkPerfectcube(int n) { // takes the sqrt of the number int d =(int) Math.cbrt(n); // checks if it is a perfect // cube number if (d * d * d == n) return true; return false; } // Function to find the largest perfect // cube number in the array static int largestPerfectcubeNumber(int a[], int n) { // stores the maximum of all // perfect cube numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube(a[i])) maxi = Math.max(a[i], maxi); } return maxi; } // Driver Code public static void main(String args[]) { int a[] = { 16, 64, 25, 2, 3, 10 }; int n =a.length; System.out.print(largestPerfectcubeNumber(a, n)); } } //contributed by Arnab Kundu
Python3
# Python 3 program to find the largest # perfect cube number among n numbers import math # Function to check if a number # is perfect cube number or not def checkPerfectcube(n): # checks if it is a perfect # cube number cube_root = n**(1./3.) if round(cube_root) ** 3 == n: return True else: return False # Function to find the largest perfect # cube number in the array def largestPerfectcubeNumber(a, n): # stores the maximum of all # perfect cube numbers maxi = -1 # Traverse all elements in the array for i in range(0, n, 1): # store the maximum if current # element is a perfect cube if (checkPerfectcube(a[i])): maxi = max(a[i], maxi) return maxi; # Driver Code if __name__ == '__main__': a = [16, 64, 25, 2, 3, 10] n = len(a) print(largestPerfectcubeNumber(a, n)) # This code is contributed by # Surendra_Gangwar
C#
//C# program to find the largest perfect // cube number among n numbers using System; public class Solution { // Function to check if a number // is perfect cube number or not static bool checkPerfectcube(int n) { // takes the sqrt of the number int d = (int)Math.Ceiling(Math.Pow(n, (double)1 / 3)); // checks if it is a perfect // cube number if (d * d * d == n) return true; return false; } // Function to find the largest perfect // cube number in the array static int largestPerfectcubeNumber(int []a, int n) { // stores the maximum of all // perfect cube numbers int maxi = -1; // Traverse all elements in the array for (int i = 0; i < n; i++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube(a[i])) maxi = Math.Max(a[i], maxi); } return maxi; } // Driver Code public static void Main() { int []a = { 16, 64, 25, 2, 3, 10 }; int n =a.Length; Console.WriteLine(largestPerfectcubeNumber(a, n)); } } /*This code is contributed by PrinciRaj1992*/
PHP
<?php // PHP program to find the largest perfect // cube number among n numbers // Function to check if a number // is perfect cube number or not function checkPerfectcube($n) { // takes the sqrt of the number $d = pow($n, (1 / 3)); $d = round($d); // checks if it is a perfect // cube number if ($d * $d * $d == $n) return true; return false; } // Function to find the largest perfect // cube number in the array function largestPerfectcubeNumber(&$a, $n) { // stores the maximum of all // perfect cube numbers $maxi = -1; // Traverse all elements in the array for ($i = 0; $i < $n; $i++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube($a[$i])) $maxi = max($a[$i], $maxi); } return $maxi; } // Driver Code $a = array( 16, 64, 25, 2, 3, 10 ); $n = sizeof($a); echo largestPerfectcubeNumber($a, $n); // This code is contributed by ita_c ?>
Javascript
<script> // Javascript program to find the largest perfect // cube number among n numbers // Function to check if a number // is perfect cube number or not function checkPerfectcube(n) { // takes the sqrt of the number let d = parseInt(Math.cbrt(n)); // checks if it is a perfect // cube number if (d * d * d == n) return true; return false; } // Function to find the largest perfect // cube number in the array function largestPerfectcubeNumber(a, n) { // stores the maximum of all // perfect cube numbers let maxi = -1; // Traverse all elements in the array for (let i = 0; i < n; i++) { // store the maximum if current // element is a perfect cube if (checkPerfectcube(a[i])) maxi = Math.max(a[i], maxi); } return maxi; } // Driver Code let a = [ 16, 64, 25, 2, 3, 10 ]; let n = a.length; document.write(largestPerfectcubeNumber(a, n)); </script>
64
Publicación traducida automáticamente
Artículo escrito por VishalBachchas y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA