Dado un número ‘n’, compruebe si es un número falso o no.
Un número engañoso se define como un número compuesto, cuya suma de dígitos es igual a la suma de dígitos de sus distintos factores primos. Cabe señalar aquí que el 1 no se considera un número primo, por lo que no se incluye en la suma de dígitos de distintos factores primos.
Ejemplos:
Input : 22 Output : A Hoax Number Explanation : The distinct prime factors of 22 are 2 and 11. The sum of their digits are 4, i.e 2 + 1 + 1 and sum of digits of 22 is also 4. Input : 84 Output : A Hoax Number Explanation : The distinct prime factors of 84 are 2, 3 and 7. The sum of their digits are 12, i.e 2 + 3 + 4 and sum of digits of 84 is also 12. Input : 19 Output : Not a Hoax Number Explanation : By definition, a hoax number is a composite number.
La definición de números falsos se parece mucho a la definición de números de Smith . De hecho, algunos de los números falsos también son números de Smith. Es evidente que aquellos números falsos que no tienen factores repetidos en su descomposición en primos, es decir, números libres de cuadrados, también son números de Smith elegibles.
Implementación
1) Primero genera todos los factores primos distintos del número ‘n’.
2) Si la ‘n’ no es un número primo, encuentre la suma de dígitos de los factores obtenidos en el paso 1.
3) Halle la suma de dígitos de ‘n’.
4) Comprobar si las sumas obtenidas en los pasos 2 y 3 son iguales o no.
5) Si las sumas son iguales, ‘n’ es un número falso.
C++
// CPP code to check if a number is a hoax // number or not. #include <bits/stdc++.h> using namespace std; // Function to find distinct prime factors // of given number n vector<int> primeFactors(int n) { vector<int> res; if (n % 2 == 0) { while (n % 2 == 0) n = n / 2; res.push_back(2); } // n is odd at this point, since it is no // longer divisible by 2. So we can test // only for the odd numbers, whether they // are factors of n for (int i = 3; i <= sqrt(n); i = i + 2) { // Check if i is prime factor if (n % i == 0) { while (n % i == 0) n = n / i; res.push_back(i); } } // This condition is to handle the case // when n is a prime number greater than 2 if (n > 2) res.push_back(n); return res; } // Function to calculate sum of digits of // distinct prime factors of given number n // and sum of digits of number n and compare // the sums obtained bool isHoax(int n) { // Distinct prime factors of n are being // stored in vector pf vector<int> pf = primeFactors(n); // If n is a prime number, it cannot be a // hoax number if (pf[0] == n) return false; // Finding sum of digits of distinct prime // factors of the number n int all_pf_sum = 0; for (int i = 0; i < pf.size(); i++) { // Finding sum of digits in current // prime factor pf[i]. int pf_sum; for (pf_sum = 0; pf[i] > 0; pf_sum += pf[i] % 10, pf[i] /= 10) ; all_pf_sum += pf_sum; } // Finding sum of digits of number n int sum_n; for (sum_n = 0; n > 0; sum_n += n % 10, n /= 10) ; // Comparing the two calculated sums return sum_n == all_pf_sum; } // Driver Method int main() { int n = 84; if (isHoax(n)) cout << "A Hoax Number\n"; else cout << "Not a Hoax Number\n"; return 0; }
Java
// Java code to check if a number is // a hoax number or not. import java.io.*; import java.util.*; public class GFG { // Function to find distinct // prime factors of given // number n static List<Integer> primeFactors(int n) { List<Integer> res = new ArrayList<Integer>(); if (n % 2 == 0) { while (n % 2 == 0) n = n / 2; res.add(2); } // n is odd at this point, // since it is no longer // divisible by 2. So we // can test only for the // odd numbers, whether they // are factors of n for (int i = 3; i <= Math.sqrt(n); i = i + 2) { // Check if i is prime factor if (n % i == 0) { while (n % i == 0) n = n / i; res.add(i); } } // This condition is to // handle the case when // n is a prime number // greater than 2 if (n > 2) res.add(n); return res; } // Function to calculate // sum of digits of distinct // prime factors of given // number n and sum of // digits of number n and // compare the sums obtained static boolean isHoax(int n) { // Distinct prime factors // of n are being // stored in vector pf List<Integer> pf = primeFactors(n); // If n is a prime number, // it cannot be a hoax number if (pf.get(0) == n) return false; // Finding sum of digits of distinct // prime factors of the number n int all_pf_sum = 0; for (int i = 0; i < pf.size(); i++) { // Finding sum of digits in current // prime factor pf[i]. int pf_sum; for (pf_sum = 0; pf.get(i) > 0; pf_sum += pf.get(i) % 10, pf.set(i,pf.get(i) / 10)); all_pf_sum += pf_sum; } // Finding sum of digits of number n int sum_n; for (sum_n = 0; n > 0; sum_n += n % 10, n /= 10) ; // Comparing the two calculated sums return sum_n == all_pf_sum; } // Driver Code public static void main(String args[]) { int n = 84; if (isHoax(n)) System.out.print( "A Hoax Number\n"); else System.out.print("Not a Hoax Number\n"); } } // This code is contributed by // Manish Shaw (manishshaw1)
Python3
# Python3 code to check if a number is a hoax # number or not. import math # Function to find distinct prime factors # of given number n def primeFactors(n) : res = [] if (n % 2 == 0) : while (n % 2 == 0) : n = int(n / 2) res.append(2) # n is odd at this point, since it is no # longer divisible by 2. So we can test # only for the odd numbers, whether they # are factors of n for i in range(3,int(math.sqrt(n)),2): # Check if i is prime factor if (n % i == 0) : while (n % i == 0) : n = int(n / i) res.append(i) # This condition is to handle the case # when n is a prime number greater than 2 if (n > 2) : res.append(n) return res # Function to calculate sum of digits of # distinct prime factors of given number n # and sum of digits of number n and compare # the sums obtained def isHoax(n) : # Distinct prime factors of n are being # stored in vector pf pf = primeFactors(n) # If n is a prime number, it cannot be a # hoax number if (pf[0] == n) : return False # Finding sum of digits of distinct prime # factors of the number n all_pf_sum = 0 for i in range(0,len(pf)): # Finding sum of digits in current # prime factor pf[i]. pf_sum = 0 while (pf[i] > 0): pf_sum += pf[i] % 10 pf[i] = int(pf[i] / 10) all_pf_sum += pf_sum # Finding sum of digits of number n sum_n = 0; while (n > 0): sum_n += n % 10 n = int(n / 10) # Comparing the two calculated sums return sum_n == all_pf_sum # Driver Method n = 84; if (isHoax(n)): print ("A Hoax Number\n") else: print ("Not a Hoax Number\n") # This code is contributed by Manish Shaw # (manishshaw1)
C#
// C# code to check if a number is // a hoax number or not. using System; using System.Collections.Generic; class GFG { // Function to find distinct // prime factors of given // number n static List<int> primeFactors(int n) { List<int> res = new List<int>(); if (n % 2 == 0) { while (n % 2 == 0) n = n / 2; res.Add(2); } // n is odd at this point, // since it is no longer // divisible by 2. So we // can test only for the // odd numbers, whether they // are factors of n for (int i = 3; i <= Math.Sqrt(n); i = i + 2) { // Check if i is prime factor if (n % i == 0) { while (n % i == 0) n = n / i; res.Add(i); } } // This condition is to // handle the case when // n is a prime number // greater than 2 if (n > 2) res.Add(n); return res; } // Function to calculate // sum of digits of distinct // prime factors of given // number n and sum of // digits of number n and // compare the sums obtained static bool isHoax(int n) { // Distinct prime factors // of n are being // stored in vector pf List<int> pf = primeFactors(n); // If n is a prime number, // it cannot be a hoax number if (pf[0] == n) return false; // Finding sum of digits of distinct // prime factors of the number n int all_pf_sum = 0; for (int i = 0; i < pf.Count; i++) { // Finding sum of digits in current // prime factor pf[i]. int pf_sum; for (pf_sum = 0; pf[i] > 0; pf_sum += pf[i] % 10, pf[i] /= 10); all_pf_sum += pf_sum; } // Finding sum of digits of number n int sum_n; for (sum_n = 0; n > 0; sum_n += n % 10, n /= 10) ; // Comparing the two calculated sums return sum_n == all_pf_sum; } // Driver Code public static void Main() { int n = 84; if (isHoax(n)) Console.Write( "A Hoax Number\n"); else Console.Write("Not a Hoax Number\n"); } } // This code is contributed by // Manish Shaw (manishshaw1)
PHP
<?php // PHP code to check if a number // is a hoax number or not. // Function to find distinct prime // factors of given number n function primeFactors($n) { $res = array(); if ($n % 2 == 0) { while ($n % 2 == 0) $n = (int)$n / 2; array_push($res, 2); } // n is odd at this point, since // it is no longer divisible by 2. // So we can test only for the odd // numbers, whether they are factors of n for ($i = 3; $i <= sqrt($n); $i = $i + 2) { // Check if i is prime factor if ($n % $i == 0) { while ($n % $i == 0) $n = (int)$n / $i; array_push($res, $i); } } // This condition is to handle // the case when n is a prime // number greater than 2 if ($n > 2) array_push($res, $n); return $res; } // Function to calculate sum // of digits of distinct prime // factors of given number n // and sum of digits of number // n and compare the sums obtained function isHoax($n) { // Distinct prime factors // of n are being stored // in vector pf $pf = primeFactors($n); // If n is a prime number, // it cannot be a hoax number if ($pf[0] == $n) return false; // Finding sum of digits of distinct // prime factors of the number n $all_pf_sum = 0; for ($i = 0; $i < count($pf); $i++) { // Finding sum of digits in // current prime factor pf[i]. $pf_sum; for ($pf_sum = 0; $pf[$i] > 0; $pf_sum += $pf[$i] % 10, $pf[$i] /= 10) ; $all_pf_sum += $pf_sum; } // Finding sum of digits of number n for ($sum_n = 0; $n > 0; $sum_n += $n % 10, $n /= 10) ; // Comparing the two calculated sums return $sum_n == $all_pf_sum; } // Driver Code $n = 84; if (isHoax($n)) echo ("A Hoax Number\n"); else echo ("Not a Hoax Number\n"); // This code is contributed by // Manish Shaw(manishshaw1) ?>
Javascript
<script> // Javascript code to check if a number is a hoax // number or not. // Function to find distinct prime factors // of given number n function primeFactors(n) { var res =[]; if (n % 2 == 0) { while (n % 2 == 0) n = parseInt(n / 2); res.push(2); } // n is odd at this point, since it is no // longer divisible by 2. So we can test // only for the odd numbers, whether they // are factors of n for (var i = 3; i <= Math.sqrt(n); i = i + 2) { // Check if i is prime factor if (n % i == 0) { while (n % i == 0) n = parseInt(n / i); res.push(i); } } // This condition is to handle the case // when n is a prime number greater than 2 if (n > 2) res.push(n); return res; } // Function to calculate sum of digits of // distinct prime factors of given number n // and sum of digits of number n and compare // the sums obtained function isHoax(n) { // Distinct prime factors of n are being // stored in vector pf var pf = primeFactors(n); // If n is a prime number, it cannot be a // hoax number if (pf[0] == n) return false; // Finding sum of digits of distinct prime // factors of the number n var all_pf_sum = 0; for (var i = 0; i < pf.length; i++) { // Finding sum of digits in current // prime factor pf[i]. var pf_sum; for (pf_sum = 0; pf[i] > 0; pf_sum += pf[i] % 10, pf[i] = parseInt(pf[i]/10)) ; all_pf_sum += pf_sum; } // Finding sum of digits of number n var sum_n; for (sum_n = 0; n > 0; sum_n += n % 10, n = parseInt(n/10)) ; // Comparing the two calculated sums return sum_n == all_pf_sum; } // Driver Method var n = 84; if (isHoax(n)) document.write( "A Hoax Number"); else document.write( "Not a Hoax Number"); // This code is contributed by rrrtnx. </script>
Producción :
A Hoax Number
Complejidad de Tiempo: O(√n log n)
Espacio Auxiliar: O(n)
Sugiera si alguien tiene una mejor solución que sea más eficiente en términos de espacio y tiempo.
Este artículo es una contribución de Aarti_Rathi . Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por SaagnikAdhikary y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA