Número de strings binarias de longitud N con K bits de configuración adyacentes

Dado  n        k        . La tarea es encontrar el número de strings binarias de longitud n de 2 n tal que satisfagan f(string de bits) = k. 
Dónde, 
 

f(x) = Number of times a set bit is adjacent to 
       another set bit in a binary string x.

For Example:
f(011101101) = 3
f(010100000) = 0
f(111111111) = 8

Ejemplos
 

Input : n = 5, k = 2
Output : 6
Explanation
There are 6 ways to form bit strings of length 5 
such that f(bit string s) = 2,
These possible strings are:-
00111, 01110, 10111, 11011, 11100, 11101

Método 1 (Fuerza bruta): El enfoque más simple es resolver el problema recursivamente, pasando el índice actual, el valor de f (string de bits) formado hasta el índice actual y el último bit que colocamos en la string binaria formada hasta (índice actual – 1). Si alcanzamos el índice donde el índice actual = n y el valor de f (string de bits) = k , contamos de esta manera, de lo contrario no lo hacemos.
A continuación se muestra la implementación del enfoque de fuerza bruta:
 

C++

// C++ program to find the number of Bit Strings
// of length N with K adjacent set bits
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of Bit Strings
// of length N with K adjacent set bits
int waysToKAdjacentSetBits(int n, int k, int currentIndex,
                           int adjacentSetBits, int lastBit)
{
 
    /* Base Case when we form bit string of length n */
    if (currentIndex == n) {
 
        // if f(bit string) = k, count this way
        if (adjacentSetBits == k)
            return 1;
        return 0;
    }
 
    int noOfWays = 0;
 
    /* Check if the last bit was set,
    if it was set then call for
    next index by incrementing the
    adjacent bit count else just call
    the next index with same value of
    adjacent bit count and either set the
    bit at current index or let it remain
    unset */
 
    if (lastBit == 1) {
        // set the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                              adjacentSetBits + 1, 1);
        // unset the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(n, k,currentIndex + 1,
                                                 adjacentSetBits, 0);
    }
    else if (!lastBit) {
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                                adjacentSetBits, 1);
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                                 adjacentSetBits, 0);
    }
 
    return noOfWays;
}
 
// Driver Code
int main()
{
    int n = 5, k = 2;
 
    /* total ways = (ways by placing 1st bit as 1 +
                    ways by placing 1st bit as 0) */
    int totalWays = waysToKAdjacentSetBits(n, k, 1, 0, 1)
                    + waysToKAdjacentSetBits(n, k, 1, 0, 0);
 
    cout << "Number of ways = " << totalWays << "\n";
 
    return 0;
}

Java

// Java program to find the number of Bit Strings
// of length N with K adjacent set bits
 
import java.util.*;
 
class solution
{
 
// Function to find the number of Bit Strings
// of length N with K adjacent set bits
static int waysToKAdjacentSetBits(int n, int k, int currentIndex,
                        int adjacentSetBits, int lastBit)
{
 
    // Base Case when we form bit string of length n
    if (currentIndex == n) {
 
        // if f(bit string) = k, count this way
        if (adjacentSetBits == k)
            return 1;
        return 0;
    }
 
    int noOfWays = 0;
 
    /* Check if the last bit was set,
    if it was set then call for
    next index by incrementing the
    adjacent bit count else just call
    the next index with same value of
    adjacent bit count and either set the
    bit at current index or let it remain
    unset */
 
    if (lastBit == 1) {
        // set the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                            adjacentSetBits + 1, 1);
        // unset the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(n, k,currentIndex + 1,
                                                adjacentSetBits, 0);
    }
    else if (lastBit == 0) {
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                                adjacentSetBits, 1);
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                                adjacentSetBits, 0);
    }
 
    return noOfWays;
}
 
// Driver Code
public static void main(String args[])
{
    int n = 5, k = 2;
 
    /* total ways = (ways by placing 1st bit as 1 +
                    ways by placing 1st bit as 0) */
    int totalWays = waysToKAdjacentSetBits(n, k, 1, 0, 1)
                    + waysToKAdjacentSetBits(n, k, 1, 0, 0);
 
    System.out.println("Number of ways = "+totalWays);
 
}
}
 
//This code is contributed by
// Surendra _Gangwar

Python 3

# Python 3 program to find the number of Bit
# Strings of length N with K adjacent set bits
 
# Function to find the number of Bit Strings
# of length N with K adjacent set bits
def waysToKAdjacentSetBits(n, k, currentIndex,
                           adjacentSetBits, lastBit):
 
    # Base Case when we form bit string of length n
    if (currentIndex == n):
     
        # if f(bit string) = k, count this way
        if (adjacentSetBits == k):
            return 1;
        return 0
         
    noOfWays = 0
 
    # Check if the last bit was set, if it was set
    # then call for next index by incrementing the
    # adjacent bit count else just call the next
    # index with same value of adjacent bit count
    # and either set the bit at current index or
    # let it remain unset
    if (lastBit == 1):
         
        # set the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                           adjacentSetBits + 1, 1);
        # unset the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(n, k,currentIndex + 1,
                                           adjacentSetBits, 0);
                                                 
    elif (lastBit != 1):
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                               adjacentSetBits, 1);
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                               adjacentSetBits, 0);
     
    return noOfWays;
 
# Driver Code
n = 5; k = 2;
 
# total ways = (ways by placing 1st bit as 1 +
#                ways by placing 1st bit as 0)
totalWays = (waysToKAdjacentSetBits(n, k, 1, 0, 1) +
             waysToKAdjacentSetBits(n, k, 1, 0, 0));
 
print("Number of ways =", totalWays);
 
# This code is contributed by Akanksha Rai

C#

// C# program to find the number of Bit Strings
// of length N with K adjacent set bits
using System;
 
class GFG
{
// Function to find the number of Bit Strings
// of length N with K adjacent set bits
static int waysToKAdjacentSetBits(int n, int k, int currentIndex,
                                  int adjacentSetBits, int lastBit)
{
 
    /* Base Case when we form bit
    string of length n */
    if (currentIndex == n)
    {
 
        // if f(bit string) = k, count this way
        if (adjacentSetBits == k)
            return 1;
        return 0;
    }
 
    int noOfWays = 0;
 
    /* Check if the last bit was set, if it was
    set then call for next index by incrementing
    the adjacent bit count else just call the next
    index with same value of adjacent bit count and
    either set the bit at current index or let it
    remain unset */
    if (lastBit == 1)
    {
        // set the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                            adjacentSetBits + 1, 1);
        // unset the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(n, k,currentIndex + 1,
                                                adjacentSetBits, 0);
    }
    else if (lastBit != 1)
    {
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                                adjacentSetBits, 1);
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                                adjacentSetBits, 0);
    }
 
    return noOfWays;
}
 
// Driver Code
public static void Main()
{
    int n = 5, k = 2;
 
    /* total ways = (ways by placing 1st bit as 1 +
                    ways by placing 1st bit as 0) */
    int totalWays = waysToKAdjacentSetBits(n, k, 1, 0, 1) +
                    waysToKAdjacentSetBits(n, k, 1, 0, 0);
 
    Console.WriteLine("Number of ways = " + totalWays);
}
}
 
// This code is contributed
// by Akanksha Rai

PHP

<?php
// PHP program to find the number of
// Bit Strings of length N with K
// adjacent set bits
 
// Function to find the number of Bit Strings
// of length N with K adjacent set bits
function waysToKAdjacentSetBits($n, $k, $currentIndex,
                           $adjacentSetBits, $lastBit)
{
 
    /* Base Case when we form bit
       string of length n */
    if ($currentIndex == $n)
    {
 
        // if f(bit string) = k, count this way
        if ($adjacentSetBits == $k)
            return 1;
        return 0;
    }
 
    $noOfWays = 0;
 
    /* Check if the last bit was set, if it
    was set then call for next index by
    incrementing the adjacent bit count else
    just call the next index with same value
    of adjacent bit count and either set the
    bit at current index or let it remain
    unset */
 
    if ($lastBit == 1)
    {
        // set the bit at currentIndex
        $noOfWays += waysToKAdjacentSetBits($n, $k, $currentIndex + 1,
                                            $adjacentSetBits + 1, 1);
        // unset the bit at currentIndex
        $noOfWays += waysToKAdjacentSetBits($n, $k,$currentIndex + 1,
                                                $adjacentSetBits, 0);
    }
    else if (!$lastBit)
    {
        $noOfWays += waysToKAdjacentSetBits($n, $k, $currentIndex + 1,
                                                $adjacentSetBits, 1);
        $noOfWays += waysToKAdjacentSetBits($n, $k, $currentIndex + 1,
                                                $adjacentSetBits, 0);
    }
 
    return $noOfWays;
}
 
// Driver Code
$n = 5;
$k = 2;
 
/* total ways = (ways by placing 1st bit as 1 +
                ways by placing 1st bit as 0) */
$totalWays = waysToKAdjacentSetBits($n, $k, 1, 0, 1) +
             waysToKAdjacentSetBits($n, $k, 1, 0, 0);
 
echo "Number of ways = ", $totalWays, "\n";
 
// This code is contributed by ajit
?>

Javascript

<script>
 
// Javascript program to find the number of Bit Strings
// of length N with K adjacent set bits
 
// Function to find the number of Bit Strings
// of length N with K adjacent set bits
function waysToKAdjacentSetBits(n, k, currentIndex,
                           adjacentSetBits, lastBit)
{
 
    /* Base Case when we form bit string of length n */
    if (currentIndex == n) {
 
        // if f(bit string) = k, count this way
        if (adjacentSetBits == k)
            return 1;
        return 0;
    }
 
    let noOfWays = 0;
 
    /* Check if the last bit was set,
    if it was set then call for
    next index by incrementing the
    adjacent bit count else just call
    the next index with same value of
    adjacent bit count and either set the
    bit at current index or let it remain
    unset */
 
    if (lastBit == 1) {
        // set the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                              adjacentSetBits + 1, 1);
        // unset the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(n, k,currentIndex + 1,
                                                 adjacentSetBits, 0);
    }
    else if (!lastBit) {
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                                adjacentSetBits, 1);
        noOfWays += waysToKAdjacentSetBits(n, k, currentIndex + 1,
                                                 adjacentSetBits, 0);
    }
 
    return noOfWays;
}
 
// Driver Code
    let n = 5, k = 2;
 
    /* total ways = (ways by placing 1st bit as 1 +
                    ways by placing 1st bit as 0) */
    let totalWays = waysToKAdjacentSetBits(n, k, 1, 0, 1)
                    + waysToKAdjacentSetBits(n, k, 1, 0, 0);
 
    document.write("Number of ways = " + totalWays);
 
</script>
Producción: 

Number of ways = 6

 

Método 2 (eficiente): en el método 1, hay subproblemas superpuestos para eliminar para los cuales podemos aplicar Programación Dinámica (Memoización). 
Para optimizar el método 1, podemos aplicar la memorización a la solución recursiva anterior de modo que, 
 

DP[i][j][k] = Number of  ways to form bit string of length i with 
              f(bit string till i) = j where the last bit is k,
              which can be 0 or 1 depending on whether the
              last bit was set or not

A continuación se muestra la implementación del enfoque eficiente: 
 

C++

// C++ program to find the number of Bit Strings
// of length N with K adjacent set bits
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 1000
 
// Function to find the number of Bit Strings
// of length N with K adjacent set bits
int waysToKAdjacentSetBits(int dp[][MAX][2], int n, int k,
                           int currentIndex, int adjacentSetBits, int lastBit)
{
    /* Base Case when we form bit
       string of length n */
    if (currentIndex == n) {
 
        // if f(bit string) = k, count this way
        if (adjacentSetBits == k)
            return 1;
        return 0;
    }
 
    if (dp[currentIndex][adjacentSetBits][lastBit] != -1) {
 
        return dp[currentIndex][adjacentSetBits][lastBit];
    }
 
    int noOfWays = 0;
 
    /* Check if the last bit was set,
    if it was set then call for
    next index by incrementing the
    adjacent bit count else just call
    the next index with same value of
    adjacent bit count and either set the
    bit at current index or let it remain
    unset */
 
    if (lastBit == 1) {
        // set the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1,
                                                 adjacentSetBits + 1, 1);
 
        // unset the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1,
                                                    adjacentSetBits, 0);
    }
 
    else if (!lastBit) {
        noOfWays += waysToKAdjacentSetBits(dp, n, k,  currentIndex + 1,
                                                     adjacentSetBits, 1);
 
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1,
                                                   adjacentSetBits, 0);
    }
 
    dp[currentIndex][adjacentSetBits][lastBit] = noOfWays;
 
    return noOfWays;
}
 
// Driver Code
int main()
{
    int n = 5, k = 2;
 
    /* dp[i][j][k] represents bit strings of length i
    with f(bit string) = j and last bit as k */
    int dp[MAX][MAX][2];
    memset(dp, -1, sizeof(dp));
 
    /* total ways = (ways by placing 1st bit as 1 +
                    ways by placing 1st bit as 0) */
    int totalWays = waysToKAdjacentSetBits(dp, n, k, 1, 0, 1)
                    + waysToKAdjacentSetBits(dp, n, k, 1, 0, 0);
 
    cout << "Number of ways = " << totalWays << "\n";
 
    return 0;
}

Java

// Java program to find the number of Bit Strings
// of length N with K adjacent set bits
class solution
{
  
static final int  MAX=1000;
  
// Function to find the number of Bit Strings
// of length N with K adjacent set bits
static int waysToKAdjacentSetBits(int dp[][][], int n, int k,
                           int currentIndex, int adjacentSetBits, int lastBit)
{
    /* Base Case when we form bit
       string of length n */
    if (currentIndex == n) {
  
        // if f(bit string) = k, count this way
        if (adjacentSetBits == k)
            return 1;
        return 0;
    }
  
    if (dp[currentIndex][adjacentSetBits][lastBit] != -1) {
  
        return dp[currentIndex][adjacentSetBits][lastBit];
    }
  
    int noOfWays = 0;
  
    /* Check if the last bit was set,
    if it was set then call for
    next index by incrementing the
    adjacent bit count else just call
    the next index with same value of
    adjacent bit count and either set the
    bit at current index or let it remain
    unset */
  
    if (lastBit == 1) {
        // set the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1,
                                                 adjacentSetBits + 1, 1);
  
        // unset the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1,
                                                    adjacentSetBits, 0);
    }
  
    else if (lastBit==0) {
        noOfWays += waysToKAdjacentSetBits(dp, n, k,  currentIndex + 1,
                                                     adjacentSetBits, 1);
  
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1,
                                                   adjacentSetBits, 0);
    }
  
    dp[currentIndex][adjacentSetBits][lastBit] = noOfWays;
  
    return noOfWays;
}
  
// Driver Code
public static void main(String args[])
{
    int n = 5, k = 2;
  
    /* dp[i][j][k] represents bit strings of length i
    with f(bit string) = j and last bit as k */
    int dp[][][]= new int[MAX][MAX][2];
     
    //initialize the dp
    for(int i=0;i<MAX;i++)
        for(int j=0;j<MAX;j++)
            for(int k1=0;k1<2;k1++)
            dp[i][j][k1]=-1;
         
  
    /* total ways = (ways by placing 1st bit as 1 +
                    ways by placing 1st bit as 0) */
    int totalWays = waysToKAdjacentSetBits(dp, n, k, 1, 0, 1)
                    + waysToKAdjacentSetBits(dp, n, k, 1, 0, 0);
  
    System.out.print( "Number of ways = " + totalWays + "\n");
}
}

Python3

# Python3 program to find the number of Bit Strings
# of length N with K adjacent set bits
 
MAX = 1000
  
# Function to find the number of Bit Strings
# of length N with K adjacent set bits
def waysToKAdjacentSetBits(dp, n, k, currentIndex, adjacentSetBits, lastBit):
    """ Base Case when we form bit
       string of length n """
    if currentIndex == n:
        # if f(bit string) = k, count this way
        if adjacentSetBits == k:
            return 1
        return 0
  
    if dp[currentIndex][adjacentSetBits][lastBit] != -1:
        return dp[currentIndex][adjacentSetBits][lastBit]
  
    noOfWays = 0
  
    """ Check if the last bit was set,
    if it was set then call for
    next index by incrementing the
    adjacent bit count else just call
    the next index with same value of
    adjacent bit count and either set the
    bit at current index or let it remain
    unset """
  
    if lastBit == 1:
        # set the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1, adjacentSetBits + 1, 1)
  
        # unset the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1, adjacentSetBits, 0)
  
    elif not lastBit:
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1, adjacentSetBits, 1)
  
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1, adjacentSetBits, 0)
  
    dp[currentIndex][adjacentSetBits][lastBit] = noOfWays
  
    return noOfWays
 
n, k = 5, 2
  
""" dp[i][j][k] represents bit strings of length i
with f(bit string) = j and last bit as k """
dp = [[[-1 for i in range(2)] for i in range(MAX)] for j in range(MAX)]
""" total ways = (ways by placing 1st bit as 1 +
                ways by placing 1st bit as 0) """
totalWays = waysToKAdjacentSetBits(dp, n, k, 1, 0, 1) + waysToKAdjacentSetBits(dp, n, k, 1, 0, 0)
print( "Number of ways =", totalWays)
 
# This code is contributed by decode2207.

C#

using System;
                 
// C# program to find the number
// of Bit Strings of length N
// with K adjacent set bits
class GFG
{
 
static readonly int MAX=1000;
 
// Function to find the number
// of Bit Strings of length N
// with K adjacent set bits
static int waysToKAdjacentSetBits(int [,,]dp,
                            int n, int k,
                            int currentIndex,
                            int adjacentSetBits,
                            int lastBit)
{
    /* Base Case when we form bit
    string of length n */
    if (currentIndex == n)
    {
 
        // if f(bit string) = k, count this way
        if (adjacentSetBits == k)
            return 1;
        return 0;
    }
 
    if (dp[currentIndex, adjacentSetBits,
                            lastBit] != -1)
    {
 
        return dp[currentIndex,
        adjacentSetBits, lastBit];
    }
 
    int noOfWays = 0;
 
    /* Check if the last bit was set,
    if it was set then call for
    next index by incrementing the
    adjacent bit count else just call
    the next index with same value of
    adjacent bit count and either set the
    bit at current index or let it remain
    unset */
 
    if (lastBit == 1)
    {
         
        // set the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n,
                                k, currentIndex + 1,
                                adjacentSetBits + 1, 1);
 
        // unset the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n,
                                k, currentIndex + 1,
                                adjacentSetBits, 0);
    }
 
    else if (lastBit==0)
    {
        noOfWays += waysToKAdjacentSetBits(dp,
                                n, k, currentIndex + 1,
                                adjacentSetBits, 1);
 
        noOfWays += waysToKAdjacentSetBits(dp,
                                n, k, currentIndex + 1,
                                adjacentSetBits, 0);
    }
 
    dp[currentIndex,adjacentSetBits,lastBit] = noOfWays;
 
    return noOfWays;
}
 
// Driver Code
public static void Main(String []args)
{
    int n = 5, k = 2;
 
    /* dp[i,j,k] represents bit strings
    of length i with f(bit string) = j
    and last bit as k */
    int [,,]dp = new int[MAX, MAX, 2];
     
    // initialize the dp
    for(int i = 0; i < MAX; i++)
        for(int j = 0; j < MAX; j++)
            for(int k1 = 0; k1 < 2; k1++)
                dp[i, j, k1]=-1;
         
 
    /* total ways = (ways by placing 1st bit as 1 +
                    ways by placing 1st bit as 0) */
    int totalWays = waysToKAdjacentSetBits(dp, n, k, 1, 0, 1)
                    + waysToKAdjacentSetBits(dp, n, k, 1, 0, 0);
 
    Console.Write( "Number of ways = " + totalWays + "\n");
}
}
 
// This code is contributed by PrinciRaj1992

Javascript

<script>
 
// JavaScript program to find the number of Bit Strings
// of length N with K adjacent set bits
 
var MAX = 1000;
 
// Function to find the number of Bit Strings
// of length N with K adjacent set bits
function waysToKAdjacentSetBits(dp, n, k,
currentIndex, adjacentSetBits, lastBit)
{
    /* Base Case when we form bit
       string of length n */
    if (currentIndex == n) {
 
        // if f(bit string) = k, count this way
        if (adjacentSetBits == k)
            return 1;
        return 0;
    }
 
    if (dp[currentIndex][adjacentSetBits][lastBit] != -1) {
 
        return dp[currentIndex][adjacentSetBits][lastBit];
    }
 
    var noOfWays = 0;
 
    /* Check if the last bit was set,
    if it was set then call for
    next index by incrementing the
    adjacent bit count else just call
    the next index with same value of
    adjacent bit count and either set the
    bit at current index or let it remain
    unset */
 
    if (lastBit == 1) {
        // set the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n, k,
        currentIndex + 1, adjacentSetBits + 1, 1);
 
        // unset the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n, k,
        currentIndex + 1, adjacentSetBits, 0);
    }
 
    else if (!lastBit) {
        noOfWays += waysToKAdjacentSetBits(dp, n, k, 
        currentIndex + 1, adjacentSetBits, 1);
 
        noOfWays += waysToKAdjacentSetBits(dp, n, k,
        currentIndex + 1, adjacentSetBits, 0);
    }
 
    dp[currentIndex][adjacentSetBits][lastBit] = noOfWays;
 
    return noOfWays;
}
 
// Driver Code
 
var n = 5, k = 2;
 
/* dp[i][j][k] represents bit strings of length i
with f(bit string) = j and last bit as k */
var dp = Array.from(Array(MAX), ()=>Array(MAX));
for(var i =0; i<MAX; i++)
        for(var j =0; j<MAX; j++)
            dp[i][j] = new Array(2).fill(-1);
/* total ways = (ways by placing 1st bit as 1 +
                ways by placing 1st bit as 0) */
var totalWays = waysToKAdjacentSetBits(dp, n, k, 1, 0, 1)
                + waysToKAdjacentSetBits(dp, n, k, 1, 0, 0);
document.write( "Number of ways = " + totalWays + "<br>");
 
 
</script>
Producción: 

Number of ways = 6

 

Publicación traducida automáticamente

Artículo escrito por sirjan13 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *